2023大数据局工作简短(七篇)

更新时间:2023-12-28 18:14:59 发布时间:24小时内 作者:文/会员上传 下载docx

20_大数据局工作简短一

于大部份营销者来说,网站再定向(onsite retargeting)是其中一个最重要的营销手段,所谓网站再定向的意思是对曾访问您网站的用户进行宣传,在他们浏览网络时向其展示广告。此手段之所以重要是因为在第一次接触中真正转化为购买的只占2%,而没有产生购买就离开网站的人群体高达98%。网站再定向的威力在于它能够帮助你吸引很多的潜在客户,由于这些用户之前已经访问了您的网站一次,这意味着他们确实对您的产品和服务感兴趣。当你不断向这些用户显示相关的广告,将能够吸引他们回访并完成购买。理论上,网站再定向技术听起来完美,但执行起来,却可能让很多广告主走入死胡同,因为它只能够覆盖到旧有的访客,而无法接触新访客。对于广告主来说,网站再定向是一把双刃刀,它虽然能带来绝佳的roi,却由于覆盖度不足,会在无形中扼杀销售机会。

其实无论是广告数据或购买行为数据,网络都能记录下来,而网络的实时记录特性,让它成为当下广告主实现定位营销的不二之选。随着技术不断革新,广告主精细化定位的需求也不断得到满足。在随后的篇幅中,我们会简单地对比几大定位技术,并通过电商案例分析来讨论如何让这些数据技术协同起来,促成客户从浏览广告到掏钱购买的转化,实现广告主的收益最大化。

网络营销的精细化定位潜力只有在大数据的支持下才能完全发挥出来。图中的数据金字塔划分出了数据的四个层级。最底层是广告表现数据,是关于广告位置和其表现的信息。具体而言,就是广告位的尺寸、在网页的位置、以往的点击率、可见曝光(viewable impreion)等指标。

再上一层就是受众分类数据。如今,市场上的数据提供商可以通过用户的线上和线下的行为,来收集到广告受众的兴趣、需求等数据。这些不会涉及个人真实身份的信息会被分析,并划分为不同的群組,例如性价比追求者、网购达人等。有了受众分类数据,广告主可以在互联网上按自己的需求和品牌的特性来投放。受众分类数据的针对性更强,也能带来比单纯依赖广告表现数据更好的点击率与转换率,因为它提供了消费者行为和偏好等宝贵信息。

第三层是搜索动机数据。搜索再定向是个用于发掘新客户的技术。它的出现让我们能够发掘出那些很可能会购物的用户,因为他们已经开始搜索与广告主产品相关的信息了。那些具有高商业价值的数据可以进一步被筛选出来,广告主可以将具有高购买意愿的人们再定向到自己的产品信息上来。

而位居数据金字塔顶端的是站内客户数据,这指的是用户在广告主网站上的用户行为数据,包括了用户浏览的页面,下载的信息,以及加入购物车的商品等数据。网站用户通常是那些已经了解过品牌并且对公司也熟悉的一群人。

对于广告主来说,金字塔四层的数据都独具价值。举例而言,广告表现数据是每个广告主都首先会关注的信息,因为这些信息在大多数广告管理平台和广告交易平台都能轻易获得的。同时,那些与用户需求和偏好相关的数据,能够助力广告主更好地实现精细化营销。因此,要想针对性地影响消费者购买路径的每个过程,我们就需要把这四层的数据分析整合,才能制定一个更全面的营销方案。

以下,我们将分享一个真实的案例,让广告主明白应当如何打通各层数据,制定覆盖消费者购买路径的精准定位的营销方案。

案例分享

背景:爱点击的客户,国内最知名的电子商务网站之一,希望能提高roi(投资回报率)和线上交易数量

挑战:客户已经使用了网站再定向技术来实现一个较好的roi,但是,从再站内定向所带动的交易数量开始有下降的趋势。

优化策略︰利用多重数据的整合,提升转化漏斗每一阶段的人群数目,以提升总转化量

第一步:网站再定向

广告主会发现网站内再定向带来的购买转化量有限,这是因为大部份广告主只会再定向曾经将商品加入购物车的访客。要想提升网站再定向的效果,最优的方法是根据用户浏览过的页面进行属性分类,并呈现具有针对性的内容。具体参考下图:

有了全面的追踪和分类,再定向受众数量的基数大幅增加。在短短两个星期内,交易数量显着提升,尤其是来自老访客的成交量更是大幅提升44%。

第二步:搜索再定向(search retargeting)及购买第三方受众分类数据

一方面,再定向可以有效地召回老访客,增大重复进入网站及购买的可能性。但同时,广告主还应该考虑怎么能增加新访客,以保证转化漏斗有足够的新增流量。

首先,我们利用搜索关键词捕捉有兴趣的用户,然后储存有关的用户数据,最后,在交易平台上将合适的广告呈现给该用户。此外,我们还会关注第三方受众分类数据中那些有着同样行为特征的用户信息,整合在一起进行精准投放。

在进行搜索再定向及购买受众数据后,新客户所带来的成交大幅度上升254%,广告效果花费cpa下降29%,同时增加该网站整体的浏览量。

第三步:利用机器学习(machine learning)进一步扩大客户的数量

用户来进行定位广告投放。xmo的算法可以对比客户的crm消费者数据与第三方受众数据,并预测出哪些网络用户会有特定的购买倾向。在这个案例中,xmo能通过机器学习来不断产生新的受众,平均每周能够细分出一个有着230万样本的人群。通过将广告投放到我们已有的目标受众群和由机器学习锁定的新目标受众,我们可以看到非常喜人的广告效果,虽然cpa轻微上升14%,但新客户成交量大幅增长26%说明了机器学习能有效地为广告主发掘新客户。

什么是机器学习(machine learning)? (摘自维基百科wikipedia) 机器学习是人工智能的核心,根据数据或以往的经验,通过设计算法来模拟背后机制和预测行为,并获取新的数据。这是一个重新组织已有的知识结构使之不断改善自身性能的过程。研究者可以

通过机器学习来抓取现有数据的特征来预测未知的概率分布,找到新的具有相同特征的数据并加入库中。机器学习中最关键的就是开发出能智能识别复杂模式并能智能化决策的算法。

观点总结

多渠道数据的整合可以在两方面帮助广告主提高广告表现。

首先,此举可以增加广告受众总数,并会为广告主赢得源源不断的访问量。第二,多渠道数据整合后的定向还能促进消费者购买漏斗的每一个过程,广告主通常利用网站再定向技术来召回“购物车放弃者”或者流失的老客户,但实际上,广告主应该把注意力放在现有客户和新客户的比例。 总而言之,从搜索动机数据,到受眾分类数据,到最终的机器学习,都能促进购买漏斗的顶端访客数量的增加。结合上创意的策略定制、精准的位置选择,客户的转化率将会提高,广告主也将挖掘出更多的商机。

20_大数据局工作简短二

职责:

1、负责大数据平台的架构设计、核心代码开发等任务;根据项目要求编写相关技术文档;

2、负责大数据平台的架构评审,代码评审,上线评审;参与数据应用需求、设计、审核和评审;

3、负责核心模块研发,负责大数据平台的搭建,完成系统调试、集成与实施;

4、负责建立和维护大数据平台技术标准规范,指导开发人员编写代码;

任职要求:

1、本科及以上计算机相关专业毕业;

2、精通离线和实时数据处理流程,掌握离线数据处理框架hive、impala、spark-sql等,掌握实时数据处理常用技术工具,包括storm、sparkstreaming等;

3、熟悉大数据技术生态圈,精通大数据技术架构,有大数据平台构建经验;

4、掌握常见数据流接入工具,包括flume、kafka等;

5、熟练掌握基本的linux操作系统和某种脚本语言编程(如shell等);

6、掌握一种或以上实时处理语言,如java、scala、python等,有scala经验者优先;

7、有实际大规模数据(tb级以上)处理经验优先;

20_大数据局工作简短三

职责:

1、负责大数据基础平台、海量数据存储处理分布式平台、数据分析系统架构设计和研发;

2、负责实时计算平台基础架构设计、部署、监控、优化升级;

3、制定项目数据仓库设计及实现规范,指导设计研发和部署;

4、协助策略和算法团队工作,保障数据挖掘建模和工程化;

5、深入研究大数据相关技术和产品,跟进业界先进技术。

任职要求:

1、3年以上大数据系统架构经验;

2、精通hadoop hbase hive spark flink kafka redis技术及其生态圈;

3、具备java scala python等开发经验,熟悉数据挖掘和分析的策略与算法;

4、精通数据抽取,海量数据传输,数据清洗的常用方法和工具。

5、具备良好的系统分析能力、故障诊断能力;

6、有大数据策略、算法、可视化经验优先;

7、有在华为云存储产品和大数据产品的开发使用经验优先。

20_大数据局工作简短四

职责:

1、负责公司大数据平台自动化运维开发、监控和优化工作,保障数据平台服务的稳定性和可用性;

2、负责公司hadoop核心技术组件日常运维工作 ;

3、负责公司大数据平台现场故障处理和排查工作;

4、研究大数据前沿技术,改进现有系统的服务和运维架构,提升系统可靠性和可运维性;

任职要求:

1、本科或以上学历,计算机、软件工程等相关专业,3年以上相关从业经验

2、精通linux运维命令,熟悉linux的维护和管理,熟悉shell/python脚本开发,掌握scala/java优先;

3、熟悉大数据项目实施:包括不限于kafka、hadoop、hive、hbase、spark等大数据生态的平台搭建,监控和调优;

4、良好团队精神服务意识,沟通协调能力;

20_大数据局工作简短五

职责:

1)负责公司软件产品整体架构的设计和关键功能实现

2)负责公司架构长期看护以及优化;

3)负责软件部门各模组间的协调配合;

4)提高巩固软件代码质量;

5)负责大数据流式框架的设计、优化及部署;

6)规划研发部门员工的技术发展路线并提供必要的帮助和指导

任职资格:

1)本科及以上学历,计算机相关专业,5年以上工作经验;

2)频繁换工作,比如一年一个公司,请绕路;

3)3年以上产品架构经验,主导过产品的成功上线;

4)对底层设备通讯协议,b/s系统,手机app开发等都有一定的了解;

5)对各种主流语言c#\java\pathon有一定的了解

5)精通各种大数据架构,并深入研究过其中一种,有storm\kafka等流式实时处理经验为佳

6)能够承担较强的工作压力,有良好的自我驱动能力和责任感;

7)具备优秀的逻辑思维能力、表达能力、沟通协调能力。

20_大数据局工作简短六

职责:

1、负责规划科技大数据平台及科技数据入库自动化的方案设计;

2、负责大数据平台的开发和维护,以及对外服务接口的开发;

3、负责大数据平台的优化和改进工作。

任职要求

1、计算机相关专业本科及以上学历,5年以上开发经验,其中3年以上为互联网、大数据相关的开发经验;

2、熟知hadoop生态圈体系,精通hadoop/spark/storm/kafka中的一项或几项,深刻理解mapreduce的运行原理和机制,有mpi经验者尚佳;

3、熟悉elasticsearch、redis、hbased等相关数据库的构建和操作,尤其是数据库集群的构建和操作,熟悉neo4j者尚佳;

4、具有机器学习相关项目经验者优先。

20_大数据局工作简短七

职责:

1. 负责大数据基础和应用平台的整体规划和架构设计,参与需求分析,架构设计,详细设计以及技术选型决策

2. 参与数据挖掘和建模相关核心算法的代码实现

3. 负责大数据算法平台的技术把关,性能调优,控制架构质量,解决项目技术难题;对研发项目和任务需求进行评估和方案设计、拆分任务并指导工程师完成开发

4. 带领团队提供并实现大数据算法平台上各项数据接入、数据挖掘分析及数据可视化的架构设计与能力,支持解决方案实施

5. 负责数据库设计、应用架构设计、核心技术选型等工作

6. 协调解决开发中的技术问题、设计和监控运营指标,保障系统稳定运行

7. 培养,指导有能力的员工,指导工程师进行技术验证实现,核心技术攻关,解决开发过程中的技术难题

任职要求:

1. 熟悉大数据和数据仓库的系统架构设计方法

2. 熟练使用并理解hadoopspark架构及生态。(hadoop,hive,hbase,elasticsearch,kafka,sparkflink等)

3. 熟悉分布式系统架构,有分布式实时、离线和机器学习平台的架构和开发经验,具备海量数据清洗、分析处理及存储的实践经验

4. 熟练使用java,具有大规模分布式系统调优经验

5. 熟悉ai相关算法,熟悉机器学习、深度学习。熟悉ai学习开源框架(tensorflow、pytorch等)者优先;

6. 具备良好的团队合作精神,对工作充满激情。

7. 熟悉fusioninsight平台开发经验者优先

推荐阅读:

  2023高层建筑火灾应急处理演练实验报告

  推荐员工上班迟到检讨书范本

  描写单位防火演练方案内容和方法

  关于学保育教育评估指南心得范本(二篇)

  最新教师纪律作风整顿自我剖析材料通用(2篇)

  最新爱心义卖心得体会(精选15篇)

热门标签: 工作 简短
2023大数据局工作简短(七篇).docx

将本文的Word文档下载到电脑

推荐度:

下载