2023-06-01
2023-06-02
2023-06-02
2023-06-03
2023-06-02
更新时间:2024-12-08 10:03:36 发布时间:24小时内 作者:文/会员上传 下载docx
2023-06-01
2023-06-02
2023-06-02
2023-06-03
2023-06-02
追梦情结
1947年,杨必成出生于广东省南海之滨汕尾镇(现为地级市)的一个贫穷小知识分子家庭。那时恰逢抗日战争胜利之后,国人企盼“民主建国”之时,父母亲就为他取名必成,祈求“建国必成”之意。此前,他的哥哥出生于_初期,参加救亡运动的双亲为其取名必胜,寓意“_必胜”,两个名字搭成一个对子:_必胜,建国必成。童年时的杨必成,家里人口众多,经济困难,但却受到父母亲良好的家庭教育。1957年秋,哥哥必胜考上了北京大学中文系,少年必成受哥哥影响,也立下梦想宏愿,长大后要当科学家,报效祖国。望子成龙的父亲根据必成从小喜欢数学的特点,给他们哥俩定下今后的发展目标:文科必胜、理科必成。
然而,必成却没有哥哥必胜的运气好,理想与现实似反差太大。他初中毕业就受到父亲“历史问题”的牵连而考不上高中,才十五岁就不得不走进社会摸爬滚打,二年后幸遇放宽中考限制,才又重读高中;1966年,他高中毕业即遭遇_灾难,1968年至1975年,他作为知青下乡到山区务农。这段时期,他历天灾――脑袋遭雷电击伤;经人祸――挨棍棒打成脑震荡;入“另类”――被定为走白专道路的典型;归“另册”――被当作严加管教的对象。在“接受再教育”的漫长岁月,他看不清前途,无奈中只能在劳作之余,在昏暗的煤油灯下,自学起“高等数学”,以排遣心中的苦闷。直至过了而立之年,作为老三届的他幸遇全国恢复高考,才戏剧性地以数学满分的成绩考入了华南师大数学系,续了儿时的大学梦。算起来,从1958年踏进中学门到1978年像“范进中举”似的跨入大学门,他整整度过了二十年的光阴岁月!
坎坷的青春旅途,时断时续的求学经历,造就了他坚韧不拔的治学精神,锤炼了他善待冷落的生活意志。作为大龄青年的他入读大学,按常理,已失去了继续搞学术研究的优势。但杨必成却十分珍惜这来之不易的人生机遇,为追回逝去的宝贵时光,他将屡遭坎坷的经历化作为科学献身的原动力,起早贪黑,努力攻读数学知识,并以优异成绩本科毕业。走上教育工作岗位后,他还脱产参加华南师大助教进修班3学期的学习,刻苦钻研基础数学硕士生课程并获结业。在高校教书育人至今近三十年,他于教学、管理之余,在自己的“一亩三分自留地”里,默默地经营着探索数学奥秘的“家庭副业”,终于科研有成,圆梦在望。
究竟什么样的人才能在基础科学研究上有所成就呢?笔者访问了Hilbert型不等式理论的探索者,广东第二师范学院(原广东教育学院)应用数学研究所所长杨必成教授,他认为,需要具备“坚忍不拔、苦练硬功、健康达观、眼界开阔”的良好素质与“淡薄名利、不怕挫折、不务钻营、追求卓越”的人格操守。随后,笔者了解到他的座右铭:“志存高远,脚踏实地,勤勉治学,执于探微”,终于意识到,对于这样的学者来说,能在Hilbert型不等式这道数学难题上取得理论突破,或许是一种必然。
在他的娓娓道来中,我们终于了解到Hilbert型不等式理论研究的始未……。
研究四重奏
1908年,二十世纪初最伟大的数学家希尔伯特(David Hilbert)发表了以其名字命名的“Hilbert不等式”,由此引起不少研究者的关注。1925年,英国数学家哈代(G. H. Hardy,华罗庚在剑桥留学时的老师)引入一对共轭指数,成功地推广Hilbert不等式,史称“Hardy-Hilbert不等式”。1934年,哈代等在数学名著“Inequalities”中,归纳了100多篇发表论文的研究思想,使关于-1齐次核Hilbert型不等式的基本理论大致完成。在此以后近60年,该类不等式虽得到广泛应用,但其本身却无甚变化,处于理论发展的“沉寂期”。
1991年,大连理工大学的知名数学家徐利治教授在国内核心期刊发表了2篇数学论文,首倡用权系数的方法以建立加强型的Hilbert不等式及Hardy-Hilbert不等式,并提出了2个公开问题,征求加强式中内常数的最佳值。不期而来,Hilbert型不等式研究的序曲又弹响了。
杨必成教授认为,近20年来,对Hilbert型不等式的研究,大致分为如下四个阶段:第一阶段(1991年至1997年),称“加强型改进时期”;第二阶段(1998年至20_年),称“引入独立参数推广时期”;第三阶段(20_年至20_年),称“参量化与抽象化时期”;第四阶段(20_年至今)称“系统化时期”。此即Hilbert型不等式理论研究的“四重奏”。
第一阶段:1992年,现在湖南吉首大学任教的高明哲教授应用权系数的方法,解决了徐的第一个公开问题;1994年底,杨必成阅读了徐教授的2篇论文,亦独立解决了徐的第一个公开问题,但却遗憾地发现与高明哲的发表论文“撞了车”。此后,国内不少学者应用权系数的方法以改进Hilbert不等式及Hardy-Hilbert不等式,得到了大量加强型的研究成果。
1997年,杨必成与高明哲合作,优化了权系数方法,圆满地解决了徐利治教授的另一个公开问题,此即是在权威期刊《数学进展》发表的《关于Hardy-Hilbert不等式的一个最佳常数》一文。这一时期的研究说明,通过巧妙配方产生权系数,并辅以分析技巧估算它,从而建立加强型的Hilbert不等式或Hardy-Hilbert不等式,这就是所谓权系数方法,它是推动Hilbert型不等式理论研究的重要方法。
第二阶段:1998年,通过深入研究探索,杨必成改进徐的权系数方法,在美国SCI期刊《数学分析及应用杂志(JMMA)》率先发表了引入独立参数以推广Hilbert积分不等式的重要数学论文“On Hilbert’s Integral Inequality”。该文通过巧妙配方,用改进的权系数方法伴之以引入独立参数及Beta函数,创造性地把对-1齐次核Hilbert不等式的研究提升到对一般负数齐次核的相关不等式研究,从而拓宽了Hilbert型不等式的研究渠道。该成果自然地开启了对Hilbert型不等式的全方位、多角度探索。论文发表后,美国《数学评论(MR)》及欧洲《数学文摘(ZM)》均对此文作了及时、详细的评论。由此而来,引起不少研究者的关注及引用,并导致不少引入独立参数的最佳推广成果发表。
20_年,杨必成与希腊数学家Th. M. Rassias合作,在SCI期刊《数学不等式及应用(MIA)》发表了长达34页的综述论文,对国际上引入独立参数的大量研究成果及研究方法作了归纳评论。该文在国际上引来了一批新的Hilbert不等式研究者。这一时期的工作特点是改进了权系数的方法并辅以引入独立参数及Beta函数,成功地推广-1齐次核Hilbert型不等式为负数齐次核的相关不等式。
第三阶段:20_年初,杨必成发现了对偶的Hardy-Hilbert不等式。同年,为科学表示引入多参量的推广不等式,他发表了配置两对共轭指数辅以独立参数的参量化思想。20_年,他应用第一阶段加强型的研究方法及参量化思想,构造了逆向的Hilbert不等式,由此开辟了Hilbert型不等式的新研究途径。
在20_年之后几年,杨必成在包括《数学学报》(英文版)在内的近10个SCI期刊发表了用线性算子理论抽象刻画一般负数齐次核的各类Hilbert型不等式;20_年,他构造了实数齐次核的Hilbert型不等式,为最终建立Hilbert型不等式及Hilbert型算子的理论作了准备;20_年7月,他应邀在第五届非线性分析国际会议(美国)作45分钟发言,系统总结参量化思想与抽象化算子刻画在Hilbert型不等式理论研究的应用。
第四阶段:20_年,杨必成在权威期刊《数学进展》发表了《参量化Hilbert型不等式研究综述》一文,以纪念Hilbert不等式诞生100周年。在前面几个阶段的研究积累基础上,杨必成开始著书立说,建立系统的Hilbert型不等式理论。
20_年1月,科学出版社出版了他长达47万字的理论专著《算子范数与Hilbert型不等式》;20_年至20_年,国外出版社(Bentham Science Publishers Ltd.)出版了他的两部英文数学专著“Hilbert-Type Integral Inequalities”及“Discrete Hilbert -Type Inequalities”。这三本书,均以权系数方法、参量化思想及算子理论为主要工具,从不同侧面、不同角度论述Hilbert型算子及其不等式应用的理论专著,内容覆盖了近100年来该领域各类发表文献及“Inequalities”的主要成果。第一本专著主要论述负数齐次核的Hilbert型不等式及其应用;第二本专著主要论述实数齐次核的Hilbert型积分不等式及其算子刻画;第三本专著主要论述实数齐次核离散的Hilbert型不等式及其算子刻画。后两本专著的工作分别推广了第一本专著的相关结果,其特点是利用Hilbert型算子系统刻画Hilbert型不等式。
蒸霞日朗
论文提要:人类社会已经进入信息时代。计算机科学的迅速发展、信息技术工具在社会生产、生活中的广泛使用,已经把数学带入了各行各业。高新技术的高精度、高速度、高安全、高质量、高效益以及全自动化等,都是通过数学模型和数学方法在计算机的计算和控制下实现的,“高新技术本质上是数学技术”。高新技术的发展和应用,使现代数学以技术化的方式迅速渗透到人们的日常生活中。为了适应信息社会对中学数学教育提出的新要求,加速中学数学教育改革的步伐,大力推进信息技术在数学教学中的普遍应用,中学数学课程教材研究开发中心已经在探索信息技术在改进学生数学学习方式和教师数学教学方式,培养学生创新精神和实践能力上的作用和途径,以及在信息技术环境下的教师专业成长、学校建设和发展等的途径。在此,本人通过自己的切身体会谈谈对初中数学课程与信息技术整合的一些粗浅认识。
关键词:教学方式 积极性 效果
随着多媒体CAI技术在教学中的越来越多的应用与课件技术的日臻熟练,我们说的多媒体信息技术已经不再是“电子黑板”的概念了,它以强大的功能,大量的信息及生动直观的影像和快捷的连接方式和超越时空的变幻,已经越来越受教师的欢迎,已经成为主要的教学手段,教学论文并逐步取代传统的教学方式。相对于传统的几何教学方法,多媒体信息技术具有很大的优势,取而代之以成为了历史的必然趋势,就其优势我认为有以下几点:
一、多媒体信息技术,可以更好的创设教学情景,激发学生学习兴趣,加深学生对知识的理解。
所谓情景是指在教学过程中教师有目的地引入或创设具有一定情绪色彩的形象的场景,以引起学生一定的态度体验,从而帮助学生理解教材,使学生心理机能得到发展情景的创设可以使学生与问题之间架设起一座“桥梁”,情景的创设不但可以吸引学生的注意力,增加学生的 学习兴趣,还能有效的引导学生分析和探索,产生解决问题的动力和方法,使学生更好的建构自己的知识的体系。
传统的几何教学中,只凭教师口头的说教和黑板上呆板的板书是很难体现出情景创设中的悬疑性、惊诧性和疑虑效果,也就是说不可能产生强烈的轰动效果和视觉反差,不能给学生留下难忘印象而引起学生的注意。而多媒体信息技术就能很好的解决这个问题,多媒体的多彩的图像,动态的影像和声音,可以使创设的情景更生动逼真接近生活,使原本抽象的几何概念,更接近实际,更能体现几何概念的实用性,有利于问题的解决。
计算机具有特殊的声、光、色、形,通过图像的翻滚、闪烁、定格、色彩变化及声响效果等给学生以新异的刺激感受。运用计算机辅助教学,向学生提供直观、多彩、生动的形象,可以使学生多种感官同时受到刺激,激发学生学习的积极性。例如:在教学初中几何第二册“轴对称图形”这一课时,就可以应用多媒体的鲜艳色彩、优美图案,直观形象地再现事物,给学生以如见其物的感受。教师可以用多媒体设计出三幅图案:一个等腰三角形、一架飞机、人民大会堂,一一显示后,用红线显现出对称轴,让学生观察。图像显示模拟逼真,渲染气氛,创造意境,有助于提高和巩固学习兴趣,激发求知欲,调动学生积极性。
所有学生几乎同时说出来:“不垂直”。 再例如:在讲授“垂直”这一章概念时,我有目的的设计了一组Flash跳水的动画,每当画中人物成功的跳入水中后,其滑稽的动作立即引起学生的注意,当第二次这个人物没有成功,斜插入水后,画面的播放器中传出“啪”的一声,学生们几乎全都笑了,一片水花过后,画面上打字幕“他为什么没有成功呢?”
教师问:“什么叫垂直呢?”
接着教师讲解了有关垂直的概念。
这节课几乎没有费什么力气,就完整的进行下来了,几乎所有的学生都明白了什么叫“垂直”,论文甚至到以后 只要提问到不垂直的问题学生几乎异口同声的说“啪”,可见这样的情景给学生留下多么深刻的印象。
理学家赤瑞特拉认为:人一般可以记住阅读内容的50%,自己听到内容的20%,自己看到内容的30%,在交流过程中自己所说的内容的70%。我可以通过多媒体的强大的文字、声音、图像和动画技术,创设出各种情景氛围,而且是传统教学中的教具和语言无法企及的生动、逼真和引人入胜。
二、多媒体信息技术,可以帮助学生更牢固的掌握几何基础知识。
美国国家教育委员会在《人人关心:数学教育的未来》的报告中指出:“实在说来,没有一个人能教数学,好的老师不是在教数学,而是激发学生自己去学数学”,“只有当学生通过自己的思考,建立起自己的数学理解力时,才能真正学好数学。”“学生要想牢固地掌握数学就必须用内心的创造与体验来学习数学。”
皮亚杰的“建构”的观点是与“活动”的观点有紧密的联系学生主动建构知识体系必须掌握“活”的几何概念,这就必须使学生在几何学习充满了观察、实验、猜想、验证、推理与交流等丰富多彩的数学活动,教育家斯腾伯格认为在教学过程中应视为交往过程,要注重交往的改进,特别强调学生个性的“自我实现”。传统的几何教学中的教具运用,并不能使抽象的几何概念真正的形象化、具体化。而多媒体技术可以使几何概念真正“活”起来。
比如用《几何画板》讲解《直线和圆的位置关系》可以使直线转动,产生与已知圆的相离、相切、相交的各种动态的位置关系,并在旁边显示圆的半径(R),并动态的显示圆心到直线的距离(d),学生们可以一目了然的 动态的了解到直线与圆的位置关系,与圆的半径(R)与圆心到直线的距离 的数量关系,使学生在观察实验的同时,推出圆的位置关系,与圆的半径与圆心到直线的距离之间的关系,
相离<=>R<d
相切<=>R = d
相交<=>d<R
学生的脑海里只要一提到直线和圆的位置关系,就想到旋转着图像。
类似这样的课件还有《垂直平分线的性质》、《平行四边形的判定》、《圆和圆的位置关系》等。
三、多媒体信息技术,可以提高学生的学习能力和创新能力。
学生的学习能力和创新能力,来源于对周围的事物的理解和对知识的观察和分析,现代教育观点认为学生学习知识的过程和发现这个知识的过程是一样的。而传统的教学方法是很难提供给学生足够的空间和足够的时间,使学生自己建构知识体系,而多媒体技术可以无限的提供给学生学习的空间和相对宽裕的学习时间。药学论文发表
日本数学教育家米川国藏认为数学教育中,学习数学知识的分析问题、解决问题的思想、方法比学习知识本身更为重要。
我认为 几何教学过程中的关键是让学生掌握知识的形成过程,使学生知其然,又知其所以然。运用多媒体教学可以将教学中涉及的事物形象、过程等全部内容再现于课堂,使教学过程形象生动,使难以觉察的东西清晰地呈现在学生的感觉能力可及的范围之内。例如:在教学“角的认识”这一课时,教学生如何画角是一个重要内容。教师用传统的教学方法在黑板上画给学生看,存在着一定的弊端。如:学生走神,教师画时部分学生不注意看;教师作图时,身体遮挡住部分学生视线等等。而运用多媒体辅助教学,情形就大不一样了。我们可以先用多媒体演示画角的步骤和基本方法,由于用多媒体演示,手段新颖,学生的注意力集中,给学生留下的表象深刻。演示结束后,教师再到黑板上示范画角,最后让学生独立画角。这样的教学过程设计,符合学生的心理需求,使学生对画角方法清楚明了,教学效果好。
布鲁纳提出的发现学习理论,强调学习进程是一种积极的认知过程,提倡知识的发现学习,学生的学习是以自己为主体的积极建构,“探索是教学的生命线”。在多媒体教学中可以提供给学生足够的空间,时间。让学生展开探索的翅膀。
例如在研究《多边形的内角和公式》时,传统教学方法,只能在黑板上画几个图,给学生几个公式,而利用多媒体技术可以给出充分多的图形,让学生在观察中,分析众多图形,并且在分析后得出结论,并可以在更多图形中验证,使学生自己得到正确的公式,在几乎是无限的空间中,研究几何图形,从中分析得出正确的结论,这是传统教学不可能做到的。真正做到陈重穆教授提出的“淡化形式,注重实质”的效果。彻底的摆脱了教学中“烧中段”的教学方式,使学生自己自主的建构知识体系。
多媒体教学可以使教师节省出大量的教书时间,可以使学生在单位时间内,获取最大限度的信息量,争取了更多的思考时间,可以利用图形的颜色和图像的闪烁给学生以暗示,还可以通过平移和旋转使学生了解知识形成的全过程,使学生在发现中掌握知识。还可以利用师生界面进行超级连接,达到师生互动,使学生在互动中,学习动态的,“活”的几何。
在新课标改革不断向前推进的形势下,新信息型探究题逐渐成为考查中的亮点,这类题目通常都会出现一些新的概念、规则、运算等,如何理解和运用题中提供的新信息是处理此类问题的关键.20_年嘉兴卷的“等邻边四边形”、宁波卷的“智慧角”、台州卷的“勾股分割点”都属于新信息探究题.
例2 (20_年嘉兴卷)类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”.
(1)概念理解
如图4,在四边形ABCD中,添加一个条件,使得四边形ABCD是“等邻边四边形”,请写出你添加的一个条件.
(2)问题探究
①小红猜想:对角线互相平分的“等邻边四边形”是菱形,她的猜想正确吗?请说明理由;
②如图5,小红画了一个Rt△ABC,其中∠ABC等于90°,AB等于2,BC等于1,并将Rt△ABC沿∠B的平分线BB_方向平移得到△A_B_C_,连结AA_,BC_. 小红要使平移后的四边形ABC_A_是“等邻边四边形”,应平移多少距离(即线段BB_的长)?
(3)应用拓展
摘要:为适应当今新的教学理念,让学生们喜欢你所教的数
学课,从学生的生活实际出发,注重实践探索,并运用多媒体在数学课堂中发挥作用,使课堂教学更为生动.
关键词:生活实际 多媒体 实践
我从事初中数学教学已有二十几个年头了,长期以来,数学留在很多学生心里的强烈印象,就是枯燥的计算、刻板的公式、远离现实生活的应用题,初中生学习数学是脱离于生活的一种纯符号的逻辑演绎,学生怕学,甚至厌学。在实际数学教学中,我们不难发现有很多学生怕学数学,认为数学太抽象,不易理解。而面对新课程的改革的大潮中,被传统教材培养长大,已经非常习惯了传统教材的我,一度也很迷茫,如何才能有效的实施课堂教学?如何让学生从怕学、厌学到不怕,甚至喜欢数学?如何使数学课堂变得生动有趣呢?以下是我对这一问题的初探。
我所在的学校是一所农村镇级初中,到我们学校来就读的学生大部分是因为父母出外打工的留守生或因其他原因而无择校机会就近入学的学生,这些原因也就构成了学生从小在学习时没有一个良好的学习环境,在家学习时没有得到来自家长的较严格督促和指导,在面对学习困难时也基本得不到有效帮助,在面对挫折时也很难得到及时的疏导和鼓励,在我的家访中能发现更有一部分家庭,由于父母工作不顺利、或父母离异等原因,家长对学生在学习中遇到的失败简单以责骂甚至拳脚对待,或者不管不问,这些都是导致学生怕数学,甚至讨厌数学的主要原因之一。2、长期以来我们的数学教学还常常处于“教材是什么,我们就教什么”,有时我们把数学与生活的天然联系割裂开来,鲜活的数学异化成了纯粹的符号系统,成了游离于生活之外的另一抽象的世界。这也是学生感觉数学枯燥无味的一大原因。3、从学生的思维特点看,他们的思维是具体、形象的,他们对数学概念理解不是按我们成人意志“直接教会学生的”,而是要通过学生的形象思维,借助对客观事物表象的理解后而产生的。单一的接受式教学让学生感觉数学的学习是那样的单调,呆板,毫无乐趣。对于学生的家庭现状我无力去改变,唯一我能做的是改变我的教学方法,去适应学生的要求。于是结合数学自身的特点,遵循学生学习数学的心理规律去创设情景,从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用,在传授知识的同时,创设更多让学生感受和体验的过程,进而使学生获得对数学知识的理解。同时充分运用多媒体教学,让学生获得更形象,更生动的感性认识。
我主要尝试了以下做法:
1. 在课堂教学中,注重从学生的生活实际出发引入新课。
在每次新授之前,我非常注重引入设计,在设计如何引入新课时十分注重从学生熟知的生活实际出发。如在教学“有序数对 ”概念,我在引入新课时,没有像教材里问学生:你们去电影院看过电影吗?原因在于:我们班里的大多数学生是留守生,其父母长年累月不在家,父母带着自己的孩子到城里电影院看一场电影几乎是一种不可能的事情。所以,多数学生对电影院内座位的编排编号情况并不熟悉。在我们杨河镇,随着经济的发展,近几年大量兴建套房,我们班大多数学生居住在套房里。于是我这样问学生:你住在几层几号?或你住在几单元几层?学生对于这样的和实际生活紧紧相连的问题,非常熟悉,答案昭然若揭。在此基础之上,再讲解“有序数对”的概念就有事半功倍之效。
2、 充分发挥多媒体教学的作用,告别传统的“小米加步枪”式教学。
在各级领导的重视、关心下,我校在本学期初已全部配备了多媒体教学设施。在此之前,我已掌握了多媒体的使用方法,还能自制数学课件,这样能大大提高了课堂教学的效率,还能使课堂教学生动有趣。如在讲实数的概念时,其中有一个结论“实数和数轴上的点是一一对应的关系”即是任何一个实数都可以用数轴上的一个点来表示它,反过来,数轴上任意一点所表示的数是实数。我利用几何画板软件制作了直径为一个单位长度的圆在数轴上滚动一周的动画课件,学生们知道,直径为1个单位长度的圆的周长是π,此圆在数轴上滚动一周的长度就是它的周长π,学生们清楚地看到表示π的点的出现,啊!数轴上竟然有一个点能准确地表示无理数π,这样学生相信其它的无理数同样也能在数轴上用一个点表示出来。若用传统的教学手段讲解,学生们只能是半信半疑。在平时的教学中,只要是学生不易理解的问题,我都想尽一切办法制作课件,帮助学生分析,从而能最大限度地发挥多媒体的功效。例如,在本学期(七年级下册)数学练习册第十五页有这样一道题:求四块绿地面积之和。为了形象化,我运用几何画板制作了四块地经两次平移成为一块长方形的动画课件,学生们看到经向下,向右两次平移后拼成的长方形的长减少了2,宽减少了1,学生很顺利地得出四块地的面积之和为S=(a-2)(b-1),这种教学效果是其他教学手段无法比拟的。
3.注重实践探索
有些概念在教室里讲学生不易接受,若有适宜的环境条件,何不让学生走出课堂,到实际生活中去探索呢?如,我在教学“点到直线的距离”这一概念时,我并没有在黑板上纸上谈兵,而是把学生带到学校的沙坑旁,先让一名学生跳远,然后现场讲解:什么是起跳线和落脚点,再让其他学生量那名学生跳远的成绩,在量的过程中,让学生明白跳远成绩实际上是指落脚点到起跳线之间的距离。通过这种实践活动,学生们不仅理解了“点到直线的距离”这一概念,而且对垂线段和点到直线的距离的区别与联系也非常清楚。 让数学课堂变得生动有趣,这是摆在我们数学教师面前的一个永久的课题,随着教学改革的不断深入,学生对教师的要求越来越高,要使自己的课堂教学对学生有强烈的吸引力,教师必须不断加强学习,不断提高自己的综合素质,从学生生活实际出发去创造情境,利用现代化的教学手段,让学生多参加实践探索活动,让数学课堂变成学生学习知识的乐园!
参考文献
_教育部制订。中学数学课程标准
20_年常州中考数学命题重视考查学生数学基础知识、问题探究能力和知识应用技能.总的来说,主要呈现以下特点.
1.重视基础,考查初中数学核心知识
根据命题指导思想,中考数学命题应该重视对学生基础知识的考查.要精选知识点,合理设置难易比例,有些要求试卷难度系数不低于,这些规定确保基础知识在试卷中所占的比例.同时基础知识命题也要避免对概念、定理、公式等的机械化记忆,注重考查蕴含在基础知识的数学思想和方法,重视试题设计的多样性.例如,第6题:已知等腰三角形两边长分别为4、9,求三角形周长.第10题:已知点P(-3,1),P关于y轴的对称点坐标为[CD#3],关于原点O的对称点坐标为[CD#3].这些题目都注重基础知识考查,但又不是概念和公式的简单再现,而是多个知识点巧妙结合,更为全面、有效地考查学生基础知识.
2.重视应用,考查学生解决问题能力
考查学生知识应用能力也是重要的命题指导思想,命题应该联系学生日常生活,考查学生知识应用能力.20_年常州中考命题也重视考查学生解决问题的能力.例如,第20题统计图表考查、第25题商场销售利润计算等,不仅与学生日常生活联系紧密,而且注重考查学生解决问题的能力.并且题型设计形式多样,不仅有文字,还有插图;有填空,还有问答形式,考查方式多种多样,注重命题方式创新,改变单独利用文字考查学生的单一形式,体现试题丰富多样,灵活多变的特点.
3.重视探究,考查学生归纳探究能力
初中毕业学生应具备探究精神和创新技能,而探究能力培养是一个循序渐进的过程,需要在扎实掌握基础知识的前提下才能提升探究能力.中考命题中也重视考查学生探究能力.例如,第24题第2问,要求学生写出符合要求的变换过程;第27题第3问,是否存在点P,并说明理由;第28题第2问,线段BQ与EQ长度是否相等.这些都是探究性问题,考查学生归纳和探究能力.
4.重视考查学生的知识综合应用能力
这类题目有一定难度,常用题型为综合题,考查学生分析问题能力和数学思想、数学方法应用能力,为做到出正确答案,需要对题目进行综合全面分析.例如,第16题有关函数与平面直角坐标系问题,第17题反比例函数和数轴结合问题等,都考查学生综合知识应用能力.命题的这些特点和趋势,对教学和学习提出更高要求.为取做到更好成绩,学生不仅要具备牢固扎实的数学基础知识,还要对不同知识点融会贯通,更好掌握所学内容,能熟练应用这些知识解答所遇到的问题.
1.课堂教学改革的必要性
另一方面,随着“减负提素”工作的开展,专业基础课课时的压缩,解析几何课程由原本每周6课时改为5课时,后又降为现在的4课时,显然原有的教学内容及方式都需要进行相应修改,而解析几何是衔接代数与几何的重要理论课程,也是后续课程的需要,其基本内容又不能做大幅度的删减,课堂教学改革只能对当前的教学模式、教学方法与手段进行合理的调整,更有效地提高课堂教学效率。课堂教学中存在的问题具体表现在以下几方面:
(1)教学思想与观念不先进。受传统教学思想的约束,课堂教学中仍然是重知识轻能力、重结果轻思维过程、重智力因素轻非智力因素,不能更好地发挥课程教学的优势。
(2)教学模式陈旧。课堂教学主要采用讲授式教学,课堂形式单调,以教师为主,学生主动参与不够,课堂气氛不活跃,不能调动学生学习的积极性,没有根据几何课程的特点,灵活运用多种多样教学模式,教学效果不明显。
(3)教学手段不灵活。传统板书教学手段显然不适应几何课堂教学,合理使用现代教学手段是大趋势,课堂上虽然也能结合多媒体课件,图形多是教师提前做好的,不能体现几何图形的形成过程,学生看过之后仍是不会做。
(4)考核方式单一。考核方式仍然是一锤定音,养成很多学生平时不好好学,到考试前期集中突击复习的习惯。
2.课堂教学改革的设计方案
2.1教学理念上的改革
课堂教学改革,教师要从思想上树立先进的教学理念。要确立学生的主体地位和教师的主导作用,发挥学生学习的主动性;要体现课堂教学以生为本的教学理念。坚持在传授知识、培养能力、提高素质的同时,要注重对学生探索精神、科学思维、实践能力、创新能力的培养的教学理念,注重数学思想方法的传授,侧重教学应用能力和创新能力的培养。在给学生传授数学知识,使学生掌握数学工具的同时,强化学生科学的思维方法、综合应用能力、学习能力和创新意识与能力的培养,全面提高学生的数学素养。以高校数学专业毕业生应具备的解析几何知识、能力和综合素质等基本要求为依据,体现大学教育的特点,围绕课堂教学改革的目的,在教学策略上,考虑教师自身、学生及教学环境在课堂教学中的作用,对数学学科的知识体系、教学内容、教学方法和教学手段等进行综合研究与实践,提高课堂教学的质量和效果。
2.2教学模式的改革
教学模式改革上要大胆尝试,针对不同的知识内容采用不同的教学方法,不能只限于“讲—听—读—记—练”的教学结构,教师灌输知识,学生被动机械地接受知识。要以学生为主体,教师要起主导作用,提倡学生课前预习、课堂提问、共同讨论的教学模式。学生经过课前预习,可以提出问题,老师和学生共同讨论。对基础理论部分,采用系统教学模式,以教师的系统讲授、学生系统记忆,复现知识技能为中心的一种教学活动体系。对拓展或应用性较强的内容,要求学生自己动手动脑,教师讲授重点,介绍方法,使学生掌握数学工具的同时,强化学生的科学思维方法,采用实践式或讨论式的教学模式,引导学生通过自己的主动发现来学习,把学习知识的过程和探索知识的过程统一起来。
2.3教学内容改革
重新修订解析几何课程的教学大纲,在尽量少减内容的前提下,修改教学重点、难点,合理安排课时,对于与中学相同或者类似的内容采用简要复习,细讲不同点,以节约课时,比如向量的概念中,空间向量和中学学的平面向量有许多类似的地方,强调空间向量特性,平面曲线的普通方程和参数方程中,主要讲参数方程的构造及解法。重新整合教学内容,以各章节为单位划分知识模块,大致可分为基础理论模块、实践应用模块、拓展模块,对不同的教学模块采用不同的教学方法,结合所使用的教材与教学参考资料,对课后习题进行分类,按学习技能可分为思考题、概念题、方法题、应用题、拓展题等,可以使学生更好地消化教材,提高解题能力。
2.4教学方法与手段上的改革
采用多媒体教学与传统的板书相结合的教学方式,增加每节课的信息量。科学制作多媒体课件,采用动画模拟,分层显示,深入浅出,达到提纲挈领的效果,使学生能更系统地掌握相关知识;对于重点的推理过程或重要的方法演绎,采用传统的板书教学,加深学生对知识的记忆;利用几何画板与数学软件制作几何图形的动画演示,展示几何图形的魅力,激发学生的学习兴趣。适当介绍几何画板与数学软件的使用方法,让有兴趣的同学自学几何图形及动画的制作技术,展开几何绘图比赛。
2.5教学实践活动的改革
强化应用数学解决实际问题的能力。教学过程中,让学生掌握本课知识的同时,学会利用几何知识解决中学数学问题,还要注意介绍本课程与其它课的关联,比如在数学分析、高等代数、高等几何、微分几何等课程式中的应用,更好地理解所学知识,达到最好的教学效果,提高每位学生学习本课程的兴趣并能提高他们利用几何知识处理实际问题的能力。
2.6考试方式的改革
考核方式改为平时考核成绩加期末考核成绩,各占总成绩百分之五十,平时成绩可根据课堂考勤、平时作业、单元检测及课堂实践活动的表现给出,期末考核就是期末考试的笔试成绩,另外设立奖励分,最高5分,不占总成绩的百分比。
(1)平时考核平时考核成绩包括三项内容:课堂考勤30%、课程作业30%、单元测试40%。其中课堂考勤3次,课堂上随机抽查点名,每次抽查记10分共30分;课程作业检查3次,按学号收取作业,每个同学检查2次作业,最后再全部收1次作业,检查总体作业完成情况,每次检查记10分,共30分;单元测试4次,在向量与坐标、直线与平面、特殊曲面与二次曲面、二次曲线的一般理论内容之后随堂测试,每次测试记10分,共40分。
(2)期末考试(闭卷)由教师出题教务处组织闭卷考试。考试题目符合各专业人才培养方案和数学分析教学大纲要求,考试内容为每学期所讲全部内容,考试题型有选择题、填空题、判断题、计算题、证明题,每次考试至少四个类型,其余按教务处和系部相关文件要求。
(3)绘图技能奖励。在解析几何课堂教学过程中,适当介绍一些利用数学软件MATLAB和几何画板绘制几何图形的简单方法,提高同学们的学习兴趣,举行一次绘图竞赛,竞赛成绩作为奖励分,根据绘图情况给成绩,最多奖5分。
3.课堂教学改革的应用实践
以第4章柱面、锥面、旋转曲面与二次曲面教学为例。
3.1教学目的
理解柱面的定义、方向、准线、母线等概念,理解锥面的定义、顶点、准线、母线等概念,理解旋转曲面的定义及轴、母线、经线、纬圆的概念;掌握利用消参数法建立柱面、锥面、旋转曲面的方程的方法与步骤,以及特殊的圆柱面、圆锥面、以坐标面上的曲线为母线的旋转曲面方程的求法;理解椭球面、单叶双曲面、双叶双曲面、椭圆抛物面、双曲抛物面的标准方程、图形及性质,掌握用平面截割法研究二次曲面的基本方法。
3.2教学要求
本章根据几何特征很明显的柱面、锥面、旋转曲面利用消参数法去建立它的方程。而对于二次曲面用“平行截割法”去研究它们的图形及性质,又讨论了单叶双曲面与双曲抛物面的直母线。要求掌握求柱面、锥面、旋转曲面方程的一般方法,会用平行截割法讨论二次曲面方程,并能做出简单图形。
3.3模块划分与教学方案
基础理论模块分两部分,柱面、锥面、旋转曲面的形成及求方程的方法———消参数法;利用平行截割法认识二次曲面的理论与方法。这部分内容要重点讲授消参数法与平面截割法的方法,各列举一例进行系统讲解,包括解题思想、基本方法及步骤都要详细介绍,例如,利用消参数法求柱面方程和利用平行截割法讨论椭球面方程详讲,之后对其余的曲面经老师提示后让学生讨论,动手完成,可选择比较好的同学上讲台试讲,让学生参与到课堂实践活动中。实践应用模块:图形的绘制与空间曲面的应用。利用几何画板制作旋转曲面的形成过程,利用MATLAB命令作各种二次曲面的图形,介绍利用几何画板制作旋转曲面的方法和MATLAB软件的使用;另一方面考虑到两曲面的交线是一曲线,这部分往往会被忽视,提醒学生注意这方面的应用。拓展模块:直纹面的概念,直母线的性质与应用。介绍直纹面的概念与性质,对性质的证明不全讲,只介绍直母线的非常神奇的应用,这部分作为拓展内容留为学生进一步查阅资料进行选学。
3.4教学效果
在教学模式上,对于基础理论模块,采用系统讲授式、讨论式、合作学习式相结合,提高了课堂效率,节约了课时;对于实践应用模块,让学生自己动手学习使用数学软件,提高实践与应用能力;拓展模块的神奇能够促使部分学生对数学有更深一步的研究。通过对教学内容划分模块,教学模式的多样性,教学方法的灵活性,采用多媒体教学与板书相结合,充分利用几何图形的特点,提高了学生学习几何的兴趣,使学生更有效地掌握教学内容,达到预期的教学目标。
4.总结
经过一年的课堂教学改革实践,对教学内容、教学模式、教学手段及考核方式进行了全面的丰富和完善,使学生掌握基础知识的同时,突出应用能力与创新思维能力的培养,学生的学习兴趣提高了,动手能力提高了,同时教学质量得到了明显提高,学生的学习素质得到全面提升。课堂教学改革设计是永无止境的,只有不断地学习总结,才能使我们的课堂更具有活力,使我们的课堂有更高的效率。
存在性探索问题历来都是考查的重点,几何与代数都有涉及.解决此类问题的一般思路为假设结论成立或存在.结合已知条件,建立数学模型,仔细分析,层层推进,如果能获得相应的结论,则假设成立,如果出现矛盾则说明原假设并不成立.
例3 (20_年衢州卷)如图7,在 △ABC中,AB等于5,AC等于9,S△ABC等于,动点P从A点出发,沿射线AB方向以每秒5个单位的速度运动,动点Q从C点出发,以相同的速度在线段AC上由C向A运动,当Q点运动到A点时,P,Q两点同时停止运动. 以PQ为边作正方形PQEF(P,Q,E,F按逆时针排序),以CQ为边在AC上方作正方形QCGH.
(1)求tanA的值;
(2)设点P运动的时间为t,正方形PQEF的面积为S,请探究S是否存在最小值?若存在,求出这个最小值,若不存在,请说明理由;
(3)当t为何值时,正方形PQEF的某个顶点(Q点除外)落在正方形QCGH的边上,请直接写出t的值.
评析 第(2)问是典型的存在性问题,我们应先假设S存在最小值,在初中阶段,求解最大值和最小值问题比较常用的方法是二次函数最值的运用,首先应想到用PQ的长度来表示正方形PQEF的面积,构造△PNQ,根据勾股定理得出PQ的长度,那么其正方形面积是一个含变量t的二次函数,建立函数模型,注意t的范围,该函数对称轴所在的点即为最小值.
笔者认为,以上分析对探究题教学有以下几点启发.一是要注重对学生思维能力的培养.探究性问题的条件往往不少,关键要引导学生仔细分析,分解问题,归纳解题步骤,只有分析透彻,掌握解题框架,遇见新的问题才能有所思.二是要注重学生良好阅读习惯的养成.在日常的教学活动中,教师应避免唱“独角戏”,要引导学生去阅读课本和相关资料,培养学生自主学习的能力.三是要善于总结归纳.由于探究题基本作为压轴题出现,难度较大,这就需要师生共同总结归纳,此类问题属于哪种探究题,那么对于这种类型的题型,我们首先应想到什么,再想到什么,层层推进,久而久之,学生脑海里会形成一定的逻辑步骤,看到难题不至于毫无思绪.
中考数学论文参考资料:
结论:中考数学探究题与类型分析为关于中考数学方面的的相关大学硕士和相关本科毕业论文以及相关中考数学论文开题报告范文和职称论文写作参考文献资料下载。
如何解决中考中有关数学的实际应用问题
随着中考制度的不但改革,要求学生的能力在不断提高,除了应掌握的课本知识外,还要学会应用课本知识解决实际问题的能力,这就要求教师除了培养学生的基本技能外,还要培养学生分析问题和解决问题的能力,先将有关中考中常考的几种题型总结如下,供同行们商榷。
题型一:列一元分式方程解应用题问题:
例题1:(日照) 春季我国西南五省持续干旱,旱情牵动着全国人民的心。“一方有难、八方支援”,某厂计划生产1800吨纯净水支援灾区人民,为尽快把纯净水发往灾区,工人把每天的工作效率提高到原计划的倍,结果比原计划提前3天完成了生产任务.求原计划每天生产多少吨纯净水?
解:设原计划每天生产x吨纯净水,则依据题意,得:180018003,
整理,得:,解之,得:x=200, 把x代入原方程,成立,
∴x=200是原方程的解.答:原计划每天生产200吨纯净水.
点评:此题重点是解决原计划和实际生产的纯净水之间的倍数关系,从而就可以列出提前3天的函数关系是,也是解此类一元一次方程的关键所在。
题型二:通过一元一次分式方程及不等式解实际应用问题。
例题2:(20_济宁)某市在道路改造过程中,需要铺设一条长为1000米的管道,决定由甲、乙两个工程队来完成这一工程.已知甲工程队比乙工程队每天能多铺设20米,且甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同.
(1)甲、乙工程队每天各能铺设多少米?(2)如果要求完成该项工程的工期不超过10天,那么为两工程队分配工程量(以百米为单位)的方案有几种?请你帮助设计出来. 解:(1)设甲工程队每天能铺设x米,则乙工程队每天能铺设(x20)米. 根据题意得:350250.解得x70.检验: x70是原分式方程的解. xx20
答:甲、乙工程队每天分别能铺设70米和50米.
(2)解:设分配给甲工程队y米,则分配给乙工程队(1000y)米. y10,70由题意,得解得500y700.所以分配方案有3种.
方案一:分配给甲工程队500米,分配给乙工程队500米;
方案二:分配给甲工程队600米,分配给乙工程队400米;
方案三:分配给甲工程队700米,分配给乙工程队300米.
点评:解决此类问题的关键是找出等式的条件,从而使问题(1)得到解决,解决问题(2)的关键是列出不等式。在500y700的条件下找出三种方案。
题型三:通过二元一次方程组解决实际问题。
例题3:(东营)如图,长青化工厂与A、B两地有公路、铁路相连.这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地.已知公路运价为元/(吨・千米),铁路运价为元/(吨・千米),且这两次运输共支出公路运输费15000元,铁路运输费97200元.求:(1)该工厂从A地购买了多少吨原料?制成运往B地的产品多少吨?(2)这批产品的销售款比原料费与运输费的和多多少元?
解:(1)设工厂从A地购买了x吨原料,制成运
往B地的产品y吨.则依题意,得:
,(20y10x)15000.解这个方程组,得:(110y120x)97200
,x400. y300
∴工厂从A地购买了400吨原料,制成运往B地的产品300吨.
(2)依题意,得:300×8000-400×1000-15000-97200=1887800
∴批产品的销售款比原料费与运输费的和多1887800元.
点评:通过购买原料和运成品列出满足公路和铁路运费的条件从而解决了得到利润。 题型四:通过与三角函数的结合解决有关实际问题。
例题4:(20_ 东营)如图某天上午9时,向阳号轮船位于A处,观测到某港口城市P位于轮船的北偏西°,轮船以21海里/时的速度向正北方向行驶,下午2时该船到达B处,这时观测到城市P位于该船的南偏西°方向,求此时轮船所处位置B与城市P的距离?(参考数据:°≈331212
,°≈,°≈,°≈) 54135
B 解:过点P作PC⊥AB,垂足为C,设PC=x海里.
PCPC5x,∴AC=.
PCx4x 在Rt△PCB中,∵tan∠B=,∴BC=.
5x4x ∵AC+BC=AB=21×5,∴215,解得x60. 123P PCPC605 ∵sinB,∴PB. 60100(海里) 在Rt△APC中,∵tan∠A= C A ∴向阳号轮船所处位置B与城市P的距离为100海里. 点评:解决此类问题的关键是三角函数的定义,准确把握三角函数的定义的比值,找出边的 关系列出方程,才能正确解决好种类题型。
总之,中考中除了这四种题型外,还有二元一次不等式的实际应用题,以及和概率频率分布直方图的一类实际问题,还有二次函数的最值问题,只有多掌握题型总结规律,才能在高考中的心用手。
一、在初中数学课堂开展自学辅导的优点
(一)开展自学辅导可以帮助学生理解课堂内容
在初中阶段,数学是一门令许多学生感到头疼的科目,不少学生曾反映,自己在课堂上跟不上其他同学的思路和教师的讲课进度。初中生在学习数学过程中,之所以会出现这样的情况,主要是因为一些数学课程内容的思维跳跃度较大,而许多学生在上课之前没有对本节课要学习的内容进行预习,因此在听课时就很难理解教师讲述的内容。开展自学辅导,可以让学生提前了解下节课的教学内容,学生在对知识有了初步了解后,再去听教师的课堂讲解,就能很快理解教师所讲的知识。
(二)开展自学辅导有助于提高学生的自学能力
在过去的初中数学课堂教学中,数学教师总是习惯于采用固定的模式开展课堂教学。例如,在讲述“三角形余弦定理”这章内容时,教师总是习惯于先将三角形余弦定理的内容写在黑板上让学生背下来,然后为学生讲述定理的含义,接着给学生分析例题,最后让学生自己完成课后练习。如果教师总是在一开始就将学习内容明明白白地告诉学生,很难培养学生的自学能力。采用自学辅导方式,让学生在上课之前先自己阅读余弦定理,然后画一个三角形来思考余弦和正弦之间的关系,可以提高学生从定理中提取知识信息的能力,掌握自学的窍门。
(三)自学辅导能够使学生养成独立思考的习惯
数学是一门偏重于运用抽象思维和逻辑推理的学科。为了培养学生的这两项能力,许多教师总是习惯于将每个数学问题的完整推理过程告诉学生,并将解题过程中的每个要点巨细无遗地分析给学生听。但不少教师在实践中发现,采用这样的方式培养学生的推理能力,取得的教学效果并不理想。这是因为,教师的讲解虽然十分详细,但却剥夺了学生独立思考问题的机会,如果学生不能独立思考,就不可能养成推理能力。在自学辅导教学中,学生是教学活动的主体,可以拥有很多独立思考数学问题的机会,在学生思考问题的过程中,教师要做的就是从旁辅导,适时为学生提供一些建议,帮助学生对问题展开探究。
二、将自学辅导应用于初中数学课堂的实践方法
(一)在预习时通过自学辅导,引导学生思考数学问题
(二)在课堂教学中通过合作探究,提高学生的自学能力
为了培养学生的自学能力,教师可以将班级上的学生划分为若干个学习小组,然后让学生通过合作探究学习来提高自学能力。例如,教师在讲到七年级上册的“二元一次方程式”时,可以创设这样一个问题:假如现在共有蓝色和紫色的礼物盒25个,礼物盒中总共装了66件礼物,在紫色的盒子中装着2件礼物,在蓝色的盒子中装着4件礼物,请问蓝色和紫色的礼物盒分别有几个?这个问题乍看之下有些复杂,但事实上这个题目是十分典型的“鸡兔同笼”问题。在讲到这个问题时,教师应该先让学生以小组为单位对问题展开讨论,尝试自己寻找建立方程式的方法。经过讨论,学生商量出,将蓝色和紫色盒子的个数设为x和y,则有方程4x+2y=66,x+y=25,将两个方程联合起来就能算出x=8,y=17。然后教师可以让学生想想怎样运用一元一次方程解答这个问题,引导学生发散思维。
(三)在下课后通过自主复习,巩固学过的数学知识
古语云:“温故而知新,可以为师矣。”就是指,复习学过的知识,可以从中领悟出新的知识,达到自学的目的。因此,初中数学教师要帮助学生养成自主复习的好习惯。例如,教师在讲完“三角形的内角和”这节内容时,可以让学生对知识点进行回顾和复习,并尝试在不了解外角和定理的情况下,运用内角和定理来推测外角和。又如,教师在讲到“全等三角形判定”时,可以先详细地给学生讲述“SSS”(三边全等)和“SAS”(两边及夹角相等)为什么可以证明两个三角形全等,并嘱咐学生在下课后自己对知识点进行总结复习,在复习时尝试分析“ASA”(两角及公共边相等)为什么可以判定两个三角形全等。复习是巩固数学知识的最佳方式,在自主复习的过程中,学生不但可以回想起旧知识,还能尝试对新知识进行推理。
三、结束语
总而言之,在初中数学课堂开展自学辅导,可以引导学生调动自己的创造性思维和抽象思维对数学问题展开思考,并运用自己的方法探究数学问题的答案。通过这样的教学方法进行课堂教学,有助于培养学生的自主学习能力和发散性思维,还能帮助学生巩固学过的知识。久而久之,学生就能在自主学习的过程中养成灵活应用数学知识的能力,并感受到学习数学的乐趣,为高中阶段更深层次的数学学习打下坚实的基础。
摘要:本文分析了差别性教学的作用,并总结了初中数学教学中差别性教学的实施办法。
关键词:初中数学;差别性教学
差别性教学是有其来源的,在教学的过程中一个班级的学生总会出现一部分学生学得好,另一部分学生学得差的现象。
学得不好的学生如果教师不能及时给予关注,他们会逐渐失去了学习的兴趣,出现破罐子破摔的现象。
因此,教师在教学过程中应更多的关注学得差的学生,希望他们能方法对路,学有所得。
1差别性教学的作用
差别性教学使不同层次的学生都有进步。
一个班级中单纯用数学成绩来分类的话,总会大致的分成好、中、差三类学生,好学生即使教师不去费多大心,这些学生的学习也会很稳定;中等程度的学生的成绩还有上升的空间,需要教师再督促一把;差等学生往往是那些调皮捣蛋、不学无术的学生,如果教师能引导好,还有改变的余地,否则就会成为问题学生。
在数学的学习过程中学生们的推理、判断能力直接影响学生的学习,有些学生推理、判断能力较强,成绩就好;相反地,另外一些学生在这方面就差一些,成绩也就不突出。
在教学过程中如果教师用统一的方法去教,那么成绩好的学生也不会得到更长远的发展,而差的学生也没办法得到提高,因此,教师要根据学生的特点采取不同的教学方法,为学生制定相应的教学内容,使不同的学生都有所发展。
鼓励学生的个性发展。
有的学生在数学上是弱科,并不意味着在其他方面都差。
例如,我曾经教过的一个学生,是个体育特长生,在我们班里他的数学成绩是比较差的,不过,这个孩子字写的特别好,因而语文成绩比较好。
针对学生的这个特点,我有意识的发挥这个学生的特长,让他在一次班会课上发言,讲了自己是如何练好字的。
这个孩子做了充分的准备,讲的很成功,受到了学生们的热烈欢迎。
从他的眼神中我也看到他充满了骄傲和自信。
这次班会课后,我又抽时间和这个学生进行了沟通,说起他的数学成绩,谈到数学也没有那么难学,关键是看你怎么看待学数学这件事。
你能写出那么好的字,语文成绩也不错,那你的数学也一定能学好。
某一科学习上落后不可怕,可怕是放弃学习这个科目。
之后,我看到了这个学生的变化,在数学科目的学习上也开始主动提出问题了,上课也积极发言了,课下也能坚持完成数学作业了。
一个学生的转变很有可能只是源于一件微不足道的小事,可这小事如果触动了学生的心灵,那是比一万句的说教都顶用的。
在教学的过程中通过鼓励学生的个性发展,使学生获得更大的自信,为学生的学习奠定坚实的基础。
2初中数学教学中差别性教学的实施办法
根据学生情况把握好分组是关键。
在实施差别性教学的过程中把学生分好组是关键,不能单纯的靠卷面分来进行分组。
我一般情况下是将学生按好、中、差分成三类,第一组是数学成绩较好的学生,他们在数学的学习上有技巧、有方法,已自成体系,比较简单的问题已能自己解决,
教师所起的作用就是引导学生进一步提高;第二组是中等程度的学生,这部分学生有一定的技巧和方法,在数学的学习上是属于已经入门的,在教师的指导下能掌握大部分知识的学生;第三组是成绩差的学生,没有什么好的学习方法,有的甚至对数学一窍不通的,需要教师下功夫去着力解决的一部分学生。
当然,在分组时要兼顾学生的内在想法,事先和学生进行沟通,然后再进行相应分组。
分组结束后教师开始在教学过程中实施差别性教学,一定注意的是教师要对这三组学生一视同仁,不能戴着有色眼睛看人,这也是差别性教学中的大忌。
教学过程的具体实施。
依据分组后学生的情况,采用不同的教学方法。
这是差别性教学的关键过程,也是较难实现的阶段,教师在教学的过程中要兼顾三组同学不同的程度,采取各有侧重的策略。
比如在复习旧课时,要以第三组学生活动为主,通过他们回答问题,让他们能够通过回忆进一步熟悉上次课的内容,起到温故而知新的效果。
对于学生练习题目的选择,也要与他们的程度结合起来,对于第一组的学生要给出具有一定挑战性的题目,使这部分学生跳一跳能够得着,以发挥他们的优势;第二组学生能够解决课本上的题目就可以了,
让他们能夯实基础,稳定进步;第三组学生的题目相对要简单一点,在掌握最基础的知识的条件下,提高学生们学习的兴趣,达到循序渐进的目的。
参考文献
[1]李力刚.浅谈在数学学习中的因材施教[J].现代教育,20_(08):23.
[2]霍海.初中数学学困生成因浅析[J].中学生数理化,(12):43.
【内容摘要】延时评价能够给学生广阔的思维空间,有利于培养学生的数学思维能力.本文从三个角度论述了数学教师采用延时评价对学生思维发展的重要意义,指出教师在教学实践中要成功地将延时评价与及时评价结合起来.
【关 键 词】延时评价;及时评价;思维
1.学生有怪问时,延时评价可提供一个敢于释疑的环境
课堂教学中,当学生提出某些古怪、幼稚、甚至是荒诞的“怪论”时,常引来教师迫不及待的否定,无形中扑灭了学生创造的火花,挫伤学生的积极性.因此,教师千万不要及时评价,而应通过延时评价的方法,鼓励学生敢于思考、敢于与众不同、敢于发现和挑战,然后及时转换角色、转换角度,走进学生的内心世界来解决问题.
2 2
x y
例 在学习“双曲线的几何性质”时,总有学生提出这样的问题:“当x=0时,方程 - =1
2 2
a b 这些似是而非的问题是多么富有创意!从教学实践看,怪问就是一颗创造的种子,它埋在学生的心里。这颗珍贵而娇嫩的种子,只有在教师的精心呵护和培育下才会生根发芽。
2.问题有多解时,延时评价可提供一个敢于质疑的环境
在数学学习中,我们经常会碰到可以从不同角度、不同侧面来解决的问题.解决这样的问题时,教师对课堂上学生提出的解决问题的方案要采用延时评价,不能过早地给予及时的终结性的评价,否则会扼杀其他学生创新思维的火花.
2 2 2 2
例已知实数a,b,x,y 满足a +b =4,x+y =9,求ax+by的最大值.
生 : 令 a=2cos α , b=2sin α , x=3cos β , y=3sin β , 则 ax+by=6(cos α cos β +
sinα sinβ )=6cos(α -β )。故当cos(α -β )=1时,ax+by 的最大值为6
教师一听,答案完全正确,情不自禁地说:“非常正确!和老师想得一模一样.其他同学呢?”哪知道
刚才举起的那些手“唰”地不见了!顿时,教师不知所措,不知道自己到底做错了什么……
正常情况下,由于受思维定势的影响,新颖、独特的见解常常出现在思维过程的后半段,也就是我们常说的“顿悟” 和“灵感”.因此,在教学中,教师不能过早地给予评价以对其他学生的思维形成定势,而应该灵活地运用延时评价,让学生在和谐的气氛中驰骋想象,使学生的个性思维得到充分发展.
3.思维受挫时,延时评价可提供一个敢于析疑的环境
案例 在利用不等式求最值时,有这样一个思维受挫的教学片段:
sinx 2
求函数 y = + 〔0<x<π 〕的最小值.
2 sinx
sinx 2
生:利用平均不等式,y≥2 . =2
2 sinx师:以上不等式能取到“=”吗?
生:因为sinx≠2,所以等号取不到,这样解错了.
师:说明用不等式不能解决此问题,可以用什么方法呢?……
以上教学片段中,虽然学生的思维暂时受挫,但这种解法是富有挑战性的,由于教师过滥的及时评价引起教学的尴尬.这种尴尬,不利于学生思维的深化和发展,挫伤了学生的学习积极性.
总之,要真正实现数学课程改革的目标,教师是关键,在课堂教学中教师要成功地运用延时评价,培养学生分析问题、解决问题的能力,促进学生思维的发展.
⑦图形的变化;⑧统计与概率.
第二阶段:专题复习,综合运用.有了第一阶段的基础,在这一阶段,要适当提高难度,因为没有一定的难度,学生的能力是很难提高的.要把各章节知识融会贯通,综合考虑和运用所学知识,为学生稳拿中档题做好准备.
第三阶段:模拟中考,查缺补漏.做模拟中考试题是为了检查复习效果,适当调整复习的内容和进度.除了学校组织外,老师也可以自行组织,目的是让学生把平时作业当考试,也要学会把考试当平时作业.引导学生学会调整心态,要有应考的策略和做到分策略,遇题不慌,学会把握时间,调整做卷进程.引导学生学会反思,总结经验教训,争取每次都能正常发挥,成绩理想.
一个人的精力、能力、水平等毕竟是有限的,要弥补这个“先天性缺陷”,就一定要向他人学习借鉴。就初中数学教师而言,我们所涉猎的范围自然应以初中数学的教育教学科研信息为主,但还应兼顾高中和小学的数学,以及计算机、物理、化学等相关学科的信息。
信息的表现形式多种多样,大致可以分为三类:
(1)书面形式,比如各种书籍、报纸、刊物等;
(2)做摘记,写在本上,编好序号目录,以便查找,所记内容比卡片更详尽,适用于比较重要的信息;
(3)复印,对于特别重要并且篇幅较长的文章,可以全文复印,复印件应用同样大小的复印纸,对不同大小的原件缩放得一样大,便于装订、排序、编目;
(4)存盘,这是针对电子信息形式的特殊性采用的一种保存方式,复制到微机硬盘或软盘上。有条件的,还能使用录音、录像、刻录光盘等等方式。
摘 要:在初中数学课堂教学中,探究性学习是实施新课标的重要手段,动手实践、自主探索、合作交流是学生数学学习的重要方式。在促进学生情感交流,互帮互学,共同提高,发挥学生学习主动性方面起着积极作用,是提高课堂教学效率的学习活动。
关键词:数学教学 探究能力 培养策略
在初中数学教学中,教师要引导学生从观察他人探究到模仿他人探究再到独立自主探究,让学生由被动变为主动,由继承走向创造,由他律走向自律。培养学生主动参与、乐于探究、交流、合作与实践的意识和习惯,切实提高学生的实践能力和创新能力,实现学生创新个性的充分发展,使学生获得可持续发展的动力。
一、树立学生的问题意识,为探究做准备
问题和思维有着密切的关系,问题意识是思维的土壤,甚至可以说,没有问题意识,就没有思维,相反,没有思维,问题意识也无法生成。在数学教学中注重学生思维方法的培养,让学生在方法引导下分析和解决问题,更有助于问题意识的发展。
在教学中,教师要注重学生从特殊到一般和从一般到特殊的思维培养。从特殊到一般是引导学生从特殊的、个别的事物中探究、归纳出事物具有的共性。如三角形的特点、二次函数、直角坐标系与点的位置、已知自变量的值求函数值、正多边形和圆等,学生一开始接触这些知识,只是从个别现象出发,而不是一开始就接触共性,在教学中教师需要引导学生从多个个别中从探究到共性。从一般到特殊是引导学生以数学思想和方法研究和分析问题,初中数学中的概念和定理就是“一般”,通过这些定理或判定等分析和解决问题,就是从一般到特殊的过程。如学习三角形全等的判定定理后证明两个三角形全等,就是从特殊到一般、从一般到特殊的过程。
二、坚持因材施教的原则
在教学中教师针对不同学生进行不同层次教学。因为学生学识水平不同,掌握知识深浅不一样,这就要求教师在教学中采用合理的教学方式,一般以讲授为主,辅以合作学习、研究学习等其他方式。讲授时可多提问,尽量照顾到好、中、差三种学生,教学中实行低起点、多归纳、勤练习、快反馈的课堂教学方法,评价学生回答问题和批改学生作业、考卷时,注意评价的及时性、公正性、激励性,如讲解平行线的性质和判定时,可帮助学生归纳出同位角找字母“F”,内错角找字母“N”,同旁内角找字母“I”,培养学生的学习能力。若采用合作学习法,教师应本着“组内异质,组间同质”的原则分组,每组4人~8人,配好、中、差各两人,选定一名小组长,给组员分配任务,提问后尽量留时间让各组组员参加讨论,举手发言,也可提问,使每位组员都有机会发言,以培养他们的语言表达能力、参与意识。教师要做好学习的参与者、促进者、帮助者和教学调控者,这样教师才能真正达到合作学习效果。
如学习三角形中位线定理以后,教师可设置三类题供学生选做:
(1)证明等边三角形的三条中位线形成什么图形?
(2)证明等边三角形的三条中位线形成几个菱形?
(3)证明平行四边形四边中点的连线形成的图形是什么?
各类学生经过努力或辅导,都能独立完成任务,体会成就感,提高学习兴趣。
三、激发学习兴趣逐渐深入学习
没有兴趣,就谈不上学习动力。有些初中生因为缺少对数学学习的兴趣,因而没有继续学习动力与信心。因此,初中数学教师要把学生学习放在优先位置,重视对初中学生学习兴趣的培养。对于初中数学学习来说,数学知识来源于生活。比如,一些立体图形及平面图形,还有相关的对称、旋转等数学知识。如果加以辅导,学生就不会觉得数学枯燥。对于数学教师来说,教室就是想象的长方体,魔方就是正方体,故宫就是典型生活中的对称。如果教师在课前提出一些生活化例子及生活中运用数学知识的例子,让学生带着问题学习,提高学生学习数学的兴趣。当学生有浓厚的学习兴趣之后,就会有积极学习动力,主动学习,不断探究,从而培养学生探究能力。
因此,在教学数学时,老师要根据学生这种心理特点,多方面挖掘学生学习兴趣,激发学生的学习热情,主要措施有以下几点:一是增强课堂趣味性,由于数学本身特点所限,理论性知识比较多,容易使学生形成数学是枯燥无味的认识,但是这并不意味着数学课没有乐趣,只是学生还没有意识到罢了。课堂教学时,老师应为学生创设趣味性的情境,使学生在探究问题过程中逐渐喜欢上数学,让学生感受到学习数学的乐趣,从而激发学生学习兴趣,以便更好地学习数学知识。二是信息技术辅助教学,现在是信息时代,信息技术的应用遍布很多学校,老师要积极运用科技成果辅助教学。通过多媒体技术,更直接地刺激到学生听觉和视觉,利用视频演示更大程度地激发学生的兴趣,而且课堂气氛更活跃。因此,老师在日常教学中应该适当运用多媒体技术进行教学,通过形象的演示过程,激发学生的兴趣。
四、发挥学生合作学习提升探究能力
新课标强调“倡导自主、合作、探究的学习方式”。作为合作学习的主体——小组合作探究,它作为一种教学方式在数学教学中已逐渐被广泛运用。很多学校正尝试新的教学方式,但现在课堂上的小组合作探究学习活动大多形式大于实效,课堂气氛表面上沸沸扬扬,但这些小组活动并没有实质性地对问题、实验进行探究,而是形式上的简单应答,活动效益很低,小组合作探究学习只是流于形式,失去真正意义,学生创新精神、实践能力、获取新知识的能力、提出问题并解决问题的能力、交流合作的能力都没有得到真正的提高。鉴于此,教师应着力寻求有效的小组合作探究策略培养学生的各种能力,为学生提供更好的小组合作探究学习氛围。
这里我们同样以人教版初中数学教材为例,以“三角形”章节内容为例,三角形的学习为之后勾股定理学习做了铺垫,因此“三角形”这章内容属于基础内容,需要学生认真掌握。但是由于个体差异和课堂时间有限性,教师不可能做到对每个学生的掌握程度充分了解,需要组员的帮助。通过小组成员对三角形的探究加深自己的学习,从而弥补课堂缺漏,争取赶上整个课堂进度。经过这个过程辅导的学生可以进一步对知识加深理解,而学生则可以解决遗留问题更好地学习。
参考文献:
[1]张维忠.初中数学课堂教学探究性学习.中学数学教学参考,(11).
初中数学论文
摘要:如今的新课程教育有一个十分明显的特点就是要改变教师的授课方式和学生的学习模式,试点并发扬以学生为主导,教师起辅助的教学模式,对于初中数学的课堂教学来说,以课堂教学为基点,充分发挥学生的主观能动性,激发学生的现象力和思维能力,是为了适应与时俱进的今天所迫切需要的.如今的中国正在大力提倡学生素质教育的发展和新课程的不断改革,而作为全国众多一线初中教师的一员,我们更应该充分的体察学生的学习动态,充分了解到学生们的主观学习方式,并适时创设教学情境,激发学生参与学习的积极性和主动性,使学生参与到学习的全过程中,培养良好积极的学习态度和坚强的学习意志,进而加强学生在初中数学课堂中的自主学习能力,笔者认为,对于学生自主学习能力的培养是,曾强学生整体学习能力的重要分支,也是在目前初中数学教学中的一种重要教学方法。
关键词:中学;数学教学;自主学习
发挥学生的主观能动性为前提条件下,来培养学生自主学习的能力。要开发学生的潜能和非智力因素,培养创新精神和创造性思维,就要去必须加强初中数学教学过程中学生独立、主动、自控性的提升。自主学习的理解不应该只是强调学习自己主动去学习,这是最浅显的看法,最重要的应该是让学生在过程中自我创新、自我发展和实现。而要达到这样的效果,必须要培养自主学习的能动性。本文将探讨教师如何来培养学生的学习个性,发展创新自主学习。
一、教学观念的转变
在现目前教育背景下,新课标与传统教学观念不同的点是它教学方法和教学理念都更加科学更加实用。新课标更加强调在教学中给学生更多自由发挥的空间,培养自主创新的精神。这便要求教师也要对自己和学生在新课标课改过程中重新定位,充分地贯彻新课标的课改精神,教学方式也要做相应的转变,课堂教学重在以学生为主体,引导学生自主学习。教师在新课改过程中虽然看似只是作为新课改的直接实施者,其实更深入的理解应该是教师应该制定与新课改想符合的教学模式和方法来满足新课改的教学要求。学生在学海泛舟,那教师应该充当领航者和灯塔。我们作为教师应该结合自身学科特点和自身教学经验,并积极探究所谓“探究式学习”的主要意图,才能更好地观测落实新课改的教学理念。通过分析不同学习水平和层次的学生来制定不同的教学方法,才是贯彻了探究式学习的理念,才更有利于培养学生的自主学习能力和兴趣,让学生积极参与学习。
二、创设情境,激发学生自主探究的兴趣“数学即生活”
在数学教学中,因为数学可以来源于生活又是服务于我们生活的,所以教师可以从学生们的知识体验和生活经验开始,创设案例情景,提出贴近生活的数学问题,启发学生将数学思维运用到生活的数学问题中,使生活和数学紧密联系,用数学知识对生活现象进行思考和解释,在学到知识的同时解决生活中遇到的实际问题,这样的话对于引起学生探究兴趣是非常有效的。比如,这样来设计一个问题:怎样测量一棵树的高度?在刚刚学习了相似三角形函数知识后,让学生针对各种不同的实际情况设计不同的测量方法。这样一来,学生还可能想到老师可能都没有想到的问题,例如:树高的话可以考虑勾股定理;树不高可以采用竹竿;天气好可以用影子和树高的关系;没有太阳没有影子;或者影子被房顶挡了。当然过程中也可能会跑题,需要教师来协调氛围和引导思维。在活跃的课堂氛围中,学生充分发散自己的思维,想尽方法也就达到了自主学习和创新的目的。学生在这个过程中运用了全等三角形、相似三角形的比例关系、勾股定理及三角函数的计算等等方法。学生通过探究式的学习实践,在其中体验、经历、感受,逐渐形成并喜爱上积极的、自主的、生动的实践性学习方式,有效培养自己的学习能动性,客服实际困难,按照自己的办法来设计方案,过程中不仅对所学知识更加熟练,还能产生浓厚的学习兴趣,学习数学的能力便得到提高了。
三、充分运用开放性问题的教学
不管是哪种教学方式,包括培养学生自主学习能力都是从实际经验总结的。因此,在教学工程中,我们一定要去重视学生的亲身体验,将学生作为课堂的主体,想尽办法为学生自主学习创造条件,让学生亲自去体会学习,感悟学习,发现学习。不管“1+3=3+1”这种简单的问题,还是测量树高这种生活上的问题,只有让学生自主自发地有了学习数学的.热情,学生的思维才能冲出禁锢,各种创新思维和奇思妙想才能突破牢笼。在我讲授等腰三角形性质这一课中,我让学生每人做一张半透明的等腰三角形纸片,把纸片对折,于是两腰就重合在一起了,问学生看到了什么现象?尽可能多地写出自己的结论。学生通过动手操作、观察、思考和交流写出了如下结论:
1.等腰三角形是轴对称图形。
,即AD为底边上的中线。
3.∠B=∠C。
4.∠BAD=∠CAD,即AD为顶角平分线。
5.∠ADB=∠ADC=90°,即AD为底边上的高。
四、培养初中学生的数学问题意识
要使学生生成自主学习的理念和自主探索的动力,主要源于对新问题的发现,提出和解决。提出发现的问题是基础,不同的学生对同样的问题都有各自的见解,一旦学生提出的问题值得深究,教师对学神的鼓励是十分重要的,这样不仅是学生有勇气去提出问题,更能潜移默化地影响周围的学生;当然如果学生所提出的问题与教学主线大径相庭,更应该让学生充分的表明自己的观点态度,通过教师的分析讲解引回正题,使学生有更加深刻映像。鼓励式教学对于初中数学课堂的教学起着极大的辅助作用,只要学生经过认真思考,我们就不能轻易地否定。在这基础上教师还应多多发散学生的思维,通过课后的作业研究以及多生活的观察,逐步提升学生的自主学习的能力和创新意识。
五、结语
陶行知先生说过:“生活即教育,社会即学校.”可以通过对生活中具体事物的发现寻找来反向论证课堂中的教学思维和方法,同时在整节课堂教学中,教师应重视前后呼应,在课堂中解决问题之后课下再进行反思总结,使学生在反复的总结和回顾当中加深印象,以便以后在此基础上进行思维的发散,进而提升学生独立自主的学习能力。
参考文献
[1]张桂芳.小学数学解决问题方法多样化的研究[D].西南大学,.
[2]颜章业.提升初中生自主学习能力的数学学案导学策略研究[D].四川师范大学,.
我除了布置常规作业之外,还有部分特殊作业与大家交流.
1.典题本.我让学生每人准备一个典题本,将自己每天作业、试卷中收获最大的两道题整理在上面,对自己的错例进行分析.每道典型题都按四个方面来进行:①分析解题思路和关键点;②梳理涉及的知识点;③完整正确地解答;④错因分析及易错点.做到绝不出现第二次类似错误,让学生每天都在原有基础上有所长进.对于学有余力的学生建议选择当天难度大的题,以提高学生中考满分的可能性.对于基础薄弱的学生,建议选择难度小一点但又非常重要的题,以自己收获最大为准则,力争基础题都能完满做到分.
2.压轴题本.压轴题本是全班学生轮流书写完成的,由学生根据自己的情况去选择、先研究,每人一题,基本做到每天讲评一题.学生将自己选的题目板书在黑板上,带领大家熟悉已知条件和问题,分析解题思路,并引导大家正确解答.慢慢地,学生选题的水平越来越高,有些题要综合运用三角形、圆、二次函数的知识才能解决.题不难,但很巧妙,让大家的思路随之打开,达成了师生之间、生生之间的沟通,达到资源共享的目的.
压轴题的重点是揭示思维过程和解题策略,简单的题可以当堂解决,难度大的布置成家庭作业,解答和梳理总结.从学生选题讲解的过程中,我发现给学生多大空间,舞台就有多大.在课堂中把三尺讲台让给学生,创造机会锻炼和展示,突出学生的主体地位,学生会很精彩,更能成就学生和老师.
总之,对于中考复习,提高实效性是我们的最终目标.每位老师都有自己的一套办法,但个人力量毕竟是有限的,我们要有全局观念、集体意识和质量意识,多听、多看、多学、多实践.发挥备课组集体的力量,加强交流合作,不断总结和改进方法,相信一定会为学生和学校做出自己应有的贡献,使初中数学教学满园春色!
参考文献:
陈登华.数学中考失误原因及其对策[J].初中生辅导,20_(9).
中考数学论文参考资料:
结论:中考数学复习感悟和做法为关于本文可作为中考数学方面的大学硕士与本科毕业论文中考数学论文开题报告范文和职称论文论文写作参考文献下载。
所谓“一线三等角”是指三个角的顶点在同一条直线上,如图1,点C是AB上一点,若∠A=∠B=∠5,则∠1=∠2,∠3=∠4.
证明:因为∠ECA=∠5+∠1=∠2+∠B,又∠B=∠5,所以∠1=∠2,同理∠3=∠4.
也就是说只要有一线三等角的模型,一定存在其它两个角相等,从而找到解决问题的突破口,或用全等、或用相似,快速使问题得到解决,本文以20_年中考题为例加以研究.
图1图2例1(天津)如图2,在边长为9的正三角形ABC中,BD=3,∠ADE=60°,则AE的长为.
解易知∠B=∠C=∠ADE,由模型知ABD∽DCE,所以AB1DC=BD1CE,即916=31CE,CE=2,故AE=7.
例2(广东)如图3,矩形ABCD中,以对角线BD为一边构造一个矩形BDEF,使得另一边EF过原矩形的顶点C.
(1)设RtCBD的面积为S1,RtBFC的面积为S2,RtDCE的面积为S3,则S1S2+S3(用“>”、“=”、“
(2)写出图中的三对相似三角形,并选择其中一对进行证明.
解(1)填“=”;(2)BCD∽DEC,BCD∽CFB,DEC∽CFB.由条件知∠F=∠BCD=∠E,由模型知DEC∽CFB.
图3图4例3(福州)如图4,等腰梯形ABCD中,AD∥BC,∠B=45°,P是BC边上一点,PAD的面积为112,设AB=x,AD=y.
(1)求y关于x的函数关系式;
(2)若∠APD=45°,当y=1时,求PB·PC的值;
(3)若∠APD=90°,求y的最小值.
解(1)y=21x;(2)等腰梯形ABCD中,∠B=∠C=45°,当∠APD=45°时,由模型知ABP∽PCD,所以AB1PC=PB1CD,又AB=CD,所以PB·PC=AB2,当y=1时x=2,即AB=2,故PB·PC=(2)2=2.(3)略.
例4(扬州)如图5,在梯形ABCD中,AB∥CD,∠B=90°,AB=2,CD=1,BC=m,P为线段BC上的一动点,且和B、C不重合,连接PA,过P作PEPA交CD所在直线于E.设BP=x,CE=y.
(1)求y关于x的函数关系式;
(2)若点P在线段BC上运动时,点E总在线段CD上,求m的取值范围.
(3)如图6,若m=4,将PEC沿PE翻折至PEG位置,∠BAG=90°,求BP长.
图5图6解(1)因为AB∥CD,∠B=90°,所以∠B=∠C=90°,因为PEPA,所以∠APE=90°,所以∠APE=∠B=∠C=90°,由模型知,所以ABP∽PCE,所以AB1PC=BP1CE,因为BC=m,BP=x,所以PC=m-x,所以21m-x=x1y,所以y=112x2+m12x,所以y关于x的函数关系式为y=112x2+m12x,x的取值范围为0
(2)因为y=112x2+m12x=112(x-m12)2+m218,所以当x=m12时,ymax=m218,所以点E总在线段CD上,所以m218≤1.所以m≤22,所以0
【摘要】为适应新课改的需要,我们要改变初中数学教师的教学方式和学生的学习方式,必须优化教学过程,让学生真正成为学习的主人,打造真正有效的数学课堂,从而提升学生的数学素养。
【关键词】优化过程;初中数学;课堂教学
一、有效预习
多年的实践表明,课前预习有利于学生提
将本文的Word文档下载到电脑
推荐度: