在执行上级党组织决定方面存在的问题及整改措施范文(通用6篇)
2023-06-15
2023-06-27
2023-03-18
2023-07-05
2023-07-06
更新时间:2024-01-12 19:17:12 发布时间:24小时内 作者:文/会员上传 下载docx
在执行上级党组织决定方面存在的问题及整改措施范文(通用6篇)
2023-06-15
2023-06-27
2023-03-18
2023-07-05
2023-07-06
内容介绍
我是辽阳县唐马中学的张海英我上课的内容是九年义务教育北师大版数学教材八年级上册第四章三节《菱形》。下面我从教材分析,教法分析,学生分析与学法指导,教学过程四个方面谈一谈我对这节课的理解与设计。
一、教材分析
(一)地位和作用《菱形》紧接《平行四边形的性质》、《平行四边形的判别》之后,纵观整个初中数学教材,它是在学生掌握了平行四边形的性质与判别之后,具备了初步的观察,操作等活动经验的基础上讲授的。这一节既是前面所学知识的继续,又是后面学习矩形、正方形等知识的基础,起着承前启后的作用,同时又为九年级进一步学习的平行四边形,特殊的平行四边形奠定基础。
(二)鉴于本节课在整个教材体系中的地位和作用,我确定了本节课的教学目标如下:
1、知识与技能,知道菱形在现实生活中的广泛应用,熟悉菱形的有关性质和判别条件,并能灵活运用。
2、过程与方法:经历探索菱形的性质和判别条件的过程,在观察、操作和分析的过程中进一步增强主动探究的意识,体会说理的基本方法。
3、情感态度与价值观。体验数学活动来源于生活又服务于生活,体现菱形的图形美,提高学生的审美情趣。
重点:菱形的性质与判别方法
难点:性质与判别方法的灵活运用
二、教法分析
针对本节课的特点,我准备采用“创设情境——观察讨论——总结归纳——知识运用”为主线的教学模式,观察、分析、讨论相结合的方法。教学中引导学生经过观察、思考、探索、交流获得知识,形成技能,在教学过程中注意创设思维情境,坚持学生主体,教师主导,在合作交流的气氛下进行师生互动,培养学生的自学能力和创新意识,让学生在教师的指导下自始至终处于一种积极思维,主动探究的学习状态。同时借助教具演示,以增加教学的直观性,更好的理解菱形的性质与判别,解决教学重点与难点。
三、学生分析与学法指导
在日常生活中,学生经常会遇到各种几何图形也包括菱形,但学生对这一图形的认识是直观的、肤浅的,因此在教学中既要利用原有直观感知及平行四边形的相关知识为基础,探索菱形的性质及判别方法,又要尝试利用它们解题。在本节课的教学中,要帮助学生学会运用观察,分析,比较,归纳,概括等方法,得出解决问题的方法,使传授知识与培养能力融为一体,使学生不仅学到科学的探究方法,而且体验到探究的乐趣,领会到成功的喜悦。
四、教学过程
(一)具体图片导入新课。
(二)出示本节课的学习目标,鼓舞学生树立信心,完成目标。
(三)通过课件演示,一般平行四边形变为菱形的过程,得出菱形定义,对比两图形异同点得出菱形的性质
(四)通过剪菱形探索菱形的判别方法。
(五)通过判别正误,例题教学,自我检测来尝试运用、巩固菱形的性质、判别
(六)回顾学习目标,检验完成情况,谈谈本节收获。
(七)作为课堂教学的延伸,布置作业。
一、说教材
首先谈谈我对教材的理解,《菱形》是人教版初中数学八年级下册第十八章18。2。2的内容,“菱形”是继“四边形”、“平行四边形”和“矩形”之后的一个学习内容,它是在学生掌握了平行四边形的性质与判定,又学习了特殊的平行四边形——矩形,具备了初步的观察、操作等活动经验的基础上讲授的。这一节课既是前面所学知识的继续,又是后面学习正方形等知识的基础,起着承前启后的作用。四边形既是平面几何中的基本图形,也是平面几何研究的主要对象,因此学好四边形的内容,尤其是特殊的四边形,对学生来说,无论是进一步学习还是实际应用都是很重要的。同时通过探索和证明菱形的特殊性质可以让学生体会证明的必要性并进一步丰富对图形的认识和感受。
二、说学情
接下来谈谈学生的实际情况。新课标指出学生是教学的主体,所以要成为符合新课标要求的教师,深入了解所面对的学生可以说是必修课。本阶段的学生已经具备了一定的分析能力,也能做出简单的逻辑推理,而且在生活中也为本节课积累了很多经验。所以,学生对本节课的学习是相对比较容易的。
三、说教学目标
根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:
(一)知识与技能
知道并且会用菱形的定义和性质来进行有关的论证和计算。
(二)过程与方法
经历探索菱形性质的过程,通过操作发现特征,进一步发展合情推理能力。通过菱形与平行四边形关系的研究,进一步加深对“一般与特殊”的认识。
(三)情感态度价值观
在探究菱形性质的过程中,享受成功的喜悦,提高学习数学的兴趣。体会菱形的图形美,感受数学与生活的密切关系。
四、说教学重难点
我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。那么根据授课内容可以确定本节课的教学重点是:菱形性质的探究。本节课的教学难点是:菱形性质的探究和应用。
五、说教法和学法
菱形是特殊的平行四边形,这节课教学时注重学生的探索过程,让学生动手操作、观察、猜测、验证,进而获得知识,培养主动探究的能力。教学方法针对本节课的特点,我采用 “创设情境——观察探索——总结归纳——知识运用”为主线的教学模式,动手观察分析讨论相结合的方法。
“授人以鱼,不如授人以渔”,本节课的教学中,要帮助学生学会运用观察、分析、比较、归纳、概括等方法,使传授知识与培养能力融为一体,在教师的指导、提示启发下,学生尝试动手操作,提高了学生的实践操作水平,培养了学生动手能力,养成勤动手,勤钻研的习惯。
六、说教学过程
下面我将重点谈谈我对教学过程的设计。
(一)新课导入
通过PPT展示生活中的菱形实例(可活动的衣帽架、收缩门、防护栏等),提问是什么图形,由已知的平行四边形引入新课。
用这些来源于生活的美丽图片吸引学生的注意力,激发他们的好奇心,诱发学生对新知识的需求。
(二)新知探索
利用制作好的平行四边行教具,将平行四边形的一条边平移到一个固定的位置后,让学生观察图形,引导学生观察教具的变化情况,引出菱形的定义(板书定义):
定义:有一组邻边相等的平行四边形叫做菱形。(板书)
【设计意图】利用自制教具,有较好的直观性和可操作性,让学生更容易理解菱形的定义,同时加强了与平行四边形定义的对比性。接下来教师用多媒体展示菱形的动画制作过程。
出示问题
问题1:菱形是轴对称图形吗?如果是,它有几条对称轴?对称轴之间有什么位置关系?
问题2:你能看出图中有哪些相等的线段和角吗?
总结学生回答得到菱形是轴对称图形,它的对角线所在的直线就是它的对称轴。
以及菱形的性质:
(1)菱形的四条边都相等。
(2)菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。
并进一步追问:这还只是我们直观折纸得出来的,那么如何证明它们呢?
出示求证:
(1)菱形的四条边都相等。
(2)菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。
让学生小组讨论进行证明,并请学生进行板演。
【设计意图】通过动手操作,经历探究对图形的对折,即对轴对称图形的再认识,感受动手实验的乐趣,培养猜想的意识,感受直观操作得出猜想的便捷性,培养学生的观察、实验、猜想等合情推理能力。
(三)课堂练习
接下来是巩固提高环节。
例1:菱形具有而平行四边形不具有性质是( )。
A。对角相等 B。对角线互相平分
C。对边相等 D。对角线互相垂直
例2:这是一个可以活动的菱形衣架,它的边长为16cm,如果墙上钉子间的距离AB=BC=16cm,
则图中的∠1=________。
(四)小结作业
提问:今天有什么收获?
引导学生回顾:菱形的定理与性质。
课后作业:
思考如何求菱形面积。
教材分析:
我这节课所教授的内容是人教版小学数学四年级下册第八单元数学广角中的例1,是探讨关于一条线段的植树问题并且两端都要栽的情况,让学生经历猜想、试验、推理等数学探索,从简单的情况入手解决复杂的问题,让学生选用自己喜欢的方法来探究栽树的棵树和间隔数之间的关系,并启发学生透过现象发现规律。
设计理念:
让学生在解决实际问题的过程中发现规律,抽取出其中的数学模型,找到解决问题的有效方法,经历分析、思考的过程。因此,本课制定了三个教学目标:
1、通过探究发现一条线段上两端要种的植树问题的规律。
2、学生经历和体验“复杂问题简单化”的解题策略和方法。
3、让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。
教学重点:
引导学生从实际问题中探索并总结出棵树与间隔数之间的关系。
教学难点:
把现实生活中类似的问题同化为“植树问题”,并运用植树问题的思想方法解决这些实际问题。
在教法上:在本节课的教学中,我根据教学内容的特点和学生的实际情况,安排了两次动手操作,引导学生积极参与,使学生在小组合作的学习活动中,加深对植树问题棵数与间隔数之间关系的认识与理解。
1、关注学习起点。
学生是数学学习的主人,在教学中,我选取生活中学生熟悉的事例,在教师的引导中让学生探究,建立知识表象,使学生得到启迪,悟到方法。把学生的主动权交给学生,让课堂真正成为学生学习的舞台。
2、体验生活中的数学。
“数学来源于生活,而又应该为生活服务。”在学生已经发现两端要种的植树问题的规律后,我开放课堂时空,让学生从路灯的问题,让学生直观地认识生活中的许多事例看上去跟植树问题毫不相似,但是只要善于观察题中的数量关系,就明白它与植树问题很相似,引导学生要灵活运用所学知识来解决生活中的一些实际问题。使学生充分感受到数学知识来源于生活,又回归于生活。
在学法上:本节课学生主要采用动手操作、合作交流的方法进行学习。
教学流程:本节课我从以下几个流程进行教学推进:一、情景导入,了解“间隔”“间隔数”的含义二、引导探究,发现“两端要种”的规律
1、创设情境,提出问题。
通过在小路植树的现实问题情境,提出“共需多少棵树苗的问题”。学生尝试猜测得到不同的答案,到底哪一种方法好呢?引导学生通过画图实际种一种去检验。通过模拟种树,使学生体验到一棵一棵种到100米太麻烦了,于是老师介绍研究复杂问题的方法:遇到复杂问题想简单的,从简单问题入手去研究。
2、简单验证,发现规律。
通过复杂的问题简单化,学生对棵树和间隔数的关系已有了一定的感性认识,再经过学生实际操作,为学生顺利发现并总结规律打下了基础。
3、通过练习的形式掌握规律。
这样一方面巩固刚发现的规律,另一方面使学生认识到植树问题的规律不仅仅能解决植树的问题,还能解决生活中很多类似的问题。
这节课我试图通过教师的引导点拨、学生的动手操作,让孩子们自主探究植树问题的几种情况,初步建立模型,寻求解决问题的策略,让他们在玩中学、在学中得到感悟。
一、教材分析:
(一)教材的地位及作用:
梯形是人们最为熟悉的几何图形之一,在生活中有着极为广泛的应用。在小学阶段学生对梯形已经有了初步的认识.本节课再次将学生带入梯形的殿堂,进一步探究梯形的相关概念、等腰梯形的性质以及解决梯形问题的策略,是四边形知识螺旋发展的一个重要环节.
(二)教学目标;
根据教材的地位及作用,考虑到学生已有的认知结构心理特征,我将本节课的教学目标确定为:
1、知识与技能目标:
(1)掌握梯形的相关概念,了解等腰梯形同一底上的两个内角相等,两条对角线相等的性质。
(2)培养学生初步应用等腰梯形的性质解决问题的能力。
2、过程与方法目标:
(1)使学生经历探究梯形相关的概念,等腰梯形性质的过程。
(2)在解决等腰梯形的应用问题的过程中,尝试多样化的方法和策略。
3、情感、态度与价值观目标:
(1)在简单的操作活动中,发展学生的说理意识和主动探究的习惯,同时培养学生的合作意识和交流能力。
(2)体会探索发现的乐趣,增强学习数学的自信心。
(三)教学重点、难点:
本着课程标准,在钻研教材的基础上,我确定:
1、本节课的教学重点是:探索等腰梯形的性质并能运用它解决一些简单的问题。
2、教学难点:梯形有关计算和推理中的常用策略.
二、教法分析:
针对本节课的特点,采用“创设情境—动手操作—合作交流—知识运用”为主线的教学方法。
三、学法指导:
《数学课程标准纲要》指出:有效的数学学习活动不能单纯依赖模仿和记忆,动手实践、自主探索与合作交流是学习数学的重要方式.为了充分体现《新课标》的要求,本节课采用“动手实践,合作探究”的学习方法。使学生积极参与教学过程,通过合作交流,激发学生的学习兴趣,体验探索的快乐,使学生的主体地位得到充分的发挥.
四、教学过程:
(一)创设情境,导入课题。
让学生拿出准备好的平行四边形纸片和剪刀,只剪一刀,保证留下的纸片是是四边形,那么留下的四边形是什么图形? 学生动手操作,我参与到学生活动中,及时搜集学生可能出现的情况。
学生容易发现,当所剪的边与相对的边平行时,得到的是平行四边形,那么不平行时,得到的是什么图形呢?由此导入课题。
设计意图:从学生刚刚研究过的的平行四边形入手,让学生既复习运用了平行四边形的相关知识,又有利于加强对比,顺利过渡到梯形的研究。
(二)动手操作,合作探究。
探究一、梯形的相关概念。
由剪纸的体验,学生很容易概括出梯形的定义,进一步引导学生认识梯形的相关概念。强调:上下底的区分是根据长度,而不是根据其位置。
紧接着让学生举出生活中梯形的实例,学生的举例可能会拘泥于校园,教室,家里的物品,这时我利用课件向学生展示墨西哥的金字塔,上海世博会中国会馆的的图片,让学生发现图片中的梯形,感受梯形的美。接着,利用多媒体展示一组图片,让学生进一步感受生活中的梯形。设计意图:让学生学会用数学的眼光看世界,体会数学与现实生活的联系.为了加深学生学生对梯形高的意义的理解,我设计了“画一画”:在一张有平行线条的纸上作一个梯形ABCD,使AD∥BC,并作出它的一条高。
待学生画好后,分别指出梯形的上底、下底和高。设计意图:让学生体会梯形高的作法,理解梯形高的意义以及梯形的高有无数条。学生知道了什么是梯形,那么梯形与平行四边形有什么异同?学生小组讨论交流后汇报,借助课件的动画效果加以强调。并进一步提出以下问题:
1、梯形是平行四边形吗
2、一组对边平行这组对边不相等的四边形是梯形吗?
设计意图:通过讨论使学生认识到,平行四边形和梯形属于四边形的两个不同分支,探究二、特殊梯形
为得到等腰梯形、直角梯形的定义,我设计了下面的活动:剪一剪:如图,把一张矩形纸片对折后,用剪刀沿斜线剪开,然后将其展开,可得到一个什么图形?
让学生从学具中拿出矩形纸片,按大屏幕的要求完成剪纸,并向大家展示,所得到的是什么图形?剪下的.是什么图形?这时我鼓励学生由剪纸过程说说什么样的梯形是等腰梯形, 什么样的梯形是直角梯形,结合课件的动画效果给出等腰梯形和直角梯形的定义。
(四)总结反思,纳入系统。
1、通过本节课的学习你得到了哪些新知识?
2、解答关于等腰梯形的问题后,你获得了哪些方法?设计意图:这是一次知识与情感的交流,培养学生自我反馈,自主发展的意识。
(五)布置作业,拓展思维。
学生经过以上四个环节的学习,已经初步掌握了等腰梯形的性质,但学生的能力有待进一步提升,因此作业布置为:
1、基础性作业:课本121面习题节1、2、3题。
2、拓展性作业:在下图所给的平行四边形(矩形)纸片上画一条裁剪直线,将该纸片裁剪成两部分,并把这两部分重新拼成如下图形:
(1)等腰梯形。
(2)直角梯形。
要求:所拼成的图形互不重叠且不留空隙。设计意图:进一步培养学生动手操作能力及独立分析问题解决问题的能力,让学生更好的会学数学,用数学的理念。同时为下节课的学习埋下伏笔。
五、板书设计。
六、教学评价。
本节课通过设置问题情境、多媒体展示、学生画图、探究,使学生在“做中学”。
一、说教材。
这课的内容是义务教育课程标准实验教科书小学数学第四册_1000以内数的认识_,根据教学大纲和新课程标准要求,这节课的教学目标确定为:
1、知识与技能:使学生掌握数数的方法,会数1000以内的数,体验数的产生和作用;知道10个一是十,10个十是一百,十个一百是一千,认识计数单位:_百__千_ 初步体会相邻两个计数单位之间的十进关系。
2、过程与方法:在具体情景中感受大数的意义,培养学生的数感和估计意识;经历观察、猜想、操作及与同伴合作交流等数学活动过程,使学生初步学会有条理地思考和解决问题。
3、情感与态度:进一步体验数学与人类生活的密切联系;在活动中体验学习的成功与快乐,培养学习数学的兴趣和自信心并能正确评价自己和他人。其中正确数1000以内的数,体会相邻两个计数单位之间的十进关系既是本节课的教学重点,也是难点。
二、说教法。
数学课程标准指出:_数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程_.据此,本节课主要采用活动教学法。
1、将教学内容活动化,让学生在做中学。
首先是猜一猜鸟巢体育馆人数的活动;接下来是小组合作数小棒的活动,给学生一大盒小棒,在猜测的基础上,将_到底有多少根小棒_这一问题交给学生,让学生自己在数小棒的操作活动中自己去体验、感悟,从而发现数数的方法,体会十进关系。然后是议一议的活动,让学生交流:关于数数,你有什么新的发现?最后是练一练的活动,包括接一接、数一数、说一说、估一估、填一填等一系列活动,让学生在活动中完成了新知的应用与拓展。
2、采用小组合作学习,让学生在交往互动中学。
本节课采用小组合作学习的形式,让学生小组合作数小棒,共同决策,集体解决问题,学生在小组中可以自由学习、充分交往,小组中的每个同学都有操作、发言的机会。
3、创设情境,让学生在轻松愉快的氛围中学。
兴趣是最好的老师。根据低年级儿童的特点,本节课创设了奥运福娃带来的挑战,让他们在挑战中学得轻松愉快又积极主动。
三、说学法。
从学法来说,本节课主要采用小组合作学习法。首先是小组合作数小棒的活动,我先让小组成员独立思考,然后组内讨论交流,达成共识,最后小组成员一齐动手操作。然后是小组议一议的活动,老师先引导学生:关于数数,你有什么新发现?学生在独立思考的基础上讨论交流,各抒己见,共同促进。组与组之间也有交流。学生合作过程中,教师不作过多的启发、引导,学生的学习方式主要是自主、合作和探究性的。
四、教学程序设计。
本节课的教学过程主要由以下几个活动组成:
活动一:猜一猜
课件出示鸟巢体育馆图片,引导学生:猜猜看,这儿可坐多少人?意在让学生在具体的情境中感受大数的意义,培养学生的数感、估计意识和能力。并由此导入课题:1000以内数的认识。
活动二:数一数
活动前,为激发学生的学习兴趣,创设了挑战情境:小朋友,福娃带来了一些题目,小朋友每答对一道题,就可以得到一个福娃,全部完成,将得到一组福娃!你们敢接受挑战吗?接下来学生满怀信心地进入数小棒的活动。
(1)数老师手中的小棒:一根一根地数,明确_10个一是十_;
(2)数一小捆的小棒:十根十根地数,明确_10个十是一百_; 复习已有旧知
(3)小组合作数更多的小棒。
晶晶带来挑战:怎样数更大的数?
数之前,先让学生猜一猜:每盘大约多少根?
学生自由猜测后,老师问:怎样能准确地知道小棒的根数?学生将自发地要求数。老师把小棒和橡皮筋分给各组,请小组合作数一数,并提出数的要求:
(一)数的速度要快;
(二)数的数量要准;
(三)数出的小棒要捆扎好,让别人很快就能看明白。
出示要求后,不是马上让他们数,而让他们先独立思考:该怎样数?再组内讨论:我们组怎样数?统一意见,达成共识。然后组内一起动手数小棒。
数完后,分小组汇报:你们组有多少根?怎样数的?每组派代表上台展示。这时,将会出现各种不同的数法:可能有10根一小捆,10小捆扎成一大捆的;也可能有20根一小捆的,或50根捆的,两小捆捆成一捆的等等。
在此基础上,老师引导学生比较:这么多的数法中,你最喜欢哪种,说说你的理由。并说一说里面有几个百、几个十和几个一。这样从感知入手,注意了数和形的结合学生很自然地得出:10个一百是一千。 这部分是重点知识。
学生在紧张有趣的数小棒活动中,经历概念形成的过程,经历将具体问题_数学化_的过程,将激发他们强烈的求知欲,提高他们的数学素养,整个活动中,教师不作过多的启发、引导,但提出了明确的要求。
活动三:指千在计数器上的位置。
这样,在已有体验的基础上,让他们自己总结归纳出相邻数位间的十进制关系,让生指具体位置培养学生的创新意识。再让生用手写一下如何写一千。
活动四、感受_一千_:
看一看,摸一摸,感受100页纸的厚度,并用手势演示一下;根据100页纸的厚度估计200页,400页纸的厚度,同桌、小组同学进行验证;估计1000页纸的厚度,师出示1000页纸,比一比谁估计的准确;
接着对学生进行节约用纸教育。
活动五、出示卡片199,它后面的数字是谁?师详细讲解,为何是200,接着问生209后面是?
你能接着数吗?
89-- 189-- 379-- 699-- 509-- 999--
接近整十、整百拐弯处数的数法是学生数数中的难点,这一活动是为突破难点而设计的。
活动六、1、(1)填一填。
10个1是 10里面有 个1
10个10是 100里面有 个10
10个百是 1000里面有 个100
(2)、 数一数。
从198数到206
从985数到1000
这里,让学生找同伴互数,再个别展示,让每个学生都有发言的机会。
2、 填一填: ----、---、800、--、--
这是一个开放性练习,学生可以一个一个地数,也可以十个十个或百个百个地数……可以按从小到大的顺序数,也可以反过来按从大到小的顺序数,只要学生说得有道理,都给予充分肯定,以提高学生解决问题策略多样的意识。)
3、 出示图片:让学生感受1000以内数的应用。让学生感受到数学与生活的密切联系,感悟数学的价值,并培养学生用数学的眼光观察生活的习惯。
最后进入总结的环节:通过大家的齐心协力,我们顺利完成挑战,同学也得到福娃(课件出示福娃图片)恭喜你们!以此激励学生努力学习,不断进步。
一、说教材:(我对教材的认识)
1、说课堂教学指导思想及课程标准:
根据新课标的指导思想:学有用的数学和应用数学的思想,在课堂教学活动中,要充分体现学生的主体作用和教师的主导作用,培养学生的全面发展和动手探究问题的能力与协作精神作为指导设计本课教案。
2、说教材地位、特点、作用。
本册书的数学问题基本都来自于学生身边熟悉的事情。体现了数学来源于生活又应用于生活的特点。本课内容“实际问题与一元一次不等式”,是在学习了一元一次方程及不等式的基本性质之后学习,这一部份内容又是后继学习的基础,并且在实际生活中有着广泛的应用,起承上启下的作用,所以非常重要。本节内容共3课时,本课为第一课时。
3、学生情况分析:
初一学生比较的活泼,参与的意识较浓,对于解一元一次方程较为熟练;
但在理性分析问题的能力较弱,对生活问题转化为数学问题的转化能力——建模思想较差。
4、说教学目标:
鉴于上述原因,参照新课标要求确定本节课的教学目标、重难点如下:
a知识目标:
①能够列一元一次不等式解决具有不等关系的实际问题;
②进一步体验不等式的解法;
b能力目标:
①发展学生由实际问题转化为数学问题的能力;提高计算能力。
②培养学生对一类问题建立一种数学模型,类比以及分类的数学思想。
c情感目标:
①强化用数学的意识从而乐于接触社会环境中的数学信息,愿意谈论某些数学话题,能够在数学活
动中发挥积极作用。
②通过探索数学问题,增强学生之间的配合,敢于面对数学活动中的困难,体验解决问题的成功感。
重点:
①由实际问题中的不等关系列出不等式;
②探究一元一次不等式的解法;
难点:列一元一次不等式描述实际问题中的不等关系。
二、说教法与学法指导
1、说教法
课堂教学是一个师生互动的发展过程,结合本节课实际情况,我采取了:
①观察,分析讨论——师生互动
②在解法探究中采取由特殊到一般的归纳方法,灵活运用;让学生体验知识的发生,发展过程,并且采用多媒体教学,有利于学生讨论活动的开展。
2、学法指导
学会用一元一次不等式模型来解决问题,鼓励努力克服困难;多角度认识问题,学会探究问题的方法。
三、说教学程序
1、提出问题,分组讨论,交流(我把这一活动分解为4个小问题)(大约15分钟)
2、由上面的问题出现的不等式而探究不等式的解法,让学生利用不等式的性质类比一元一次方程的解法总结不等式的解题过程(约5分钟)
3、巩固解题方法,给出2个简单的不等式,让学生在黑板上来做(约5分钟)
4、拓展与发展,给出问题2(第三个活动)没有分解成小问题(指导学生先独立,后合作探究)建模的思想(大约12分钟)
5、小结:让学生谈谈对本节课的认识和收获(大约3分钟)
不同层次的学生会有不同的认识,我将作恰当的补充。
让学生思想感情上的升华——克服困难的品质。
四、说板书
我把问题1的解题过程分步书写,让学生能从中体会研究问题的方法,让学生的知识认识上升到理性认识
五、说作业:
P1401—4,9评价上课效果,对本课的内容巩固,反馈作用
各位领导、老师们:
大家好!
今天我说课的内容是义务教育课程标准实验教科书《数学》八年级上册第十二章等腰三角形性质第一课时。下面,我从教材分析、教法分析、学法分析、教学过程、教学反思五个方面来汇报我对这节课的教学设想。
一、教材分析
1、教材的地位与作用:
本节课内容是在学生掌握了一般三角形和轴对称的知识,具有初步的推理证明能力的基础上进行学习的。使学生学会分析、学会证明,在培养学生的思维能力和推理能力等方面有重要的作用。通过等腰三角形的性质反映在一个三角形中“等边对等角”的边角关系,并且是对轴对称图形性质的直观反映(三线合一)。它所倡导的“观察---发现---猜想---论证”的数学思想方法是今后研究数学的基本思想方法。等腰三角形的性质也是论证两个角相等、两条线段相等、两条直线垂直的重要依据,因此,本节内容在教材中处于非常重要的地位,起着承前启后的作用。
2、教学目标:
知识技能:理解掌握等腰三角形的性质;运用等腰三角形的性质进行证明和计算。
过程方法:通过实践、观察、证明等腰三角形的性质,发展学生合情推理能力和演绎推理能力。
解决问题:通过观察等腰三角形的对称性,及运用等腰三角形的性质解决有关的问题,提高学生观察、分析、归纳、运用知识解决问题的能力,发展应用意识。
情感态度:通过引导学生对图形的观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心。
(根据教材内容的地位与作用及教学目标,因此我将把本节课的重点确定为:等腰三角形的性质的探究和应用。由于对文字语言叙述的几何命题的证明要求严格且步骤繁琐,此时八年级学生还没有深刻的理解和熟练的掌握,因此我将把本节课的难点定为:等腰三角形性质的推理证明。)
3、教学重点与难点:
重点:等腰三角形的性质的探索和应用。
难点:等腰三角形性质的推理证明。
二、教法设计:
教法设想:我采用探索发现法和启发式教学法完成本节的教学,在教学中通过创设情景,设计问题,引导学生自主探索,合作交流,组织学生动手操作,观察现象,提出猜想,推理论证等。有效地启发学生的思考,使学生真正成为学习的主体。
三、学法设计:
在学生学习的过程中,我将从两个方面指导学生学习,一方面老师大胆放手,让学生去自主探究等腰三角形的性质,另一方面,在对等腰三角形性质的证明过程中,老师要巧妙引导,分散难点。这样做既有利于活跃学生的思维,又能帮助他们探本求源,这样也体现了以“教师为主导,学生为主体”的新课改背景下的教学原则。
四、教学过程:
根据制定的教学目标,围绕重点,突破难点,我将从以下七个方面设计我的教学过程:
1、创设情景:
首先向同学们出示精美的建筑物图片,并提出问题串:
(1)什么是轴对称图形?这些图片中有轴对称图形吗?
(2)里面有等腰三角形吗?然后向学生介绍等腰三角形的定义以及边角等相关的概念,由于学生小学就已经接触过,所以学生很容易理解。再提出第三个问题:
(3)a.等腰三角形是轴对称图形吗?b.等腰三角形具备哪些性质呢?引出本节课的课题-我们这节课来探究等腰三角形的性质。--板书课题。
2、动手操作,大胆猜想:
①拿出课下制作的等腰三角形的纸片,它是轴对称图形吗?对称轴是谁?用你手中的纸片说明你的看法?②等腰三角形沿对称轴折叠后,你能得到哪些结论?(看谁得到的结论多)
③分组讨论。(看哪一组气氛最活跃,结论又对又多.)
然后小组代表发言,交流讨论结果。
④归纳:你能猜想得到等腰三角形具有什么性质?你能用文字语言归纳一下吗?
(教师引导学生进行总结归纳得出性质1,2)
性质1:等腰三角形的两底角相等。(简写成“等边对等角”)
性质2:等腰三角形的顶角的平分线,底边上的中线,底边上的高互相重合。(简称“三线合一”)
(设计意图:由学生自己动手折纸活动,根据等腰三角形轴对称性,大胆猜测等腰三角形的性质,培养学生的观察分析、概括总结能力。也发展了学生的几何直观。教师在学生猜想的基础上,引导学生观察、完善、归纳出性质1和性质2;培养了学生进行合情推理的能力。)
3、证明猜想,形成定理:
你能证明等腰三角形的性质吗?
对于这种几何命题的证明需要三大步骤:分析题设结论,画出图形写出已知和求证,最后进行推理证明。这对于八年级学段的学生难度较大,为了突破难点,我决定设计以下三个阶梯问题:
(1)找出“性质1”的题设和结论,画出的图形,写出已知和求证。
(2)证明角和角相等有哪些方法?(学生可能会想到平行线的性质,全等三角形的性质)
(3)通过折叠等腰三角形纸片,你认为本题用什么方法证明∠B=∠C,写出证明过程。
问题1的设计使得学生顺利地将文字语言转化为符号语言,帮助学生顺利地写出已知和求证;
问题2提供给学生了解题思路,引导学生用旧的知识解决新的问题,体现了数学的转化思想。找到新知识的生长点,就是三角形的全等。
问题3的设计目的:因为辅助线的添加是本题中的又一难点,因此让学生对折等腰三角形纸片,使两腰重合,使学生在形成感性认识的同时,意识到要证明∠B=∠C,关键是将∠B和∠C放在两三角形中去,构造全等三角形,老师再及时设问:你认为可以通过什么方法可以将∠B和∠C放在两个三角形中去呢?再次让学生思考,由于对知识的发生,发展有了充分的了解,学生探讨以后可能会得出以下三种方法:
(1)作顶角∠BAC的平分线,
(2)作底边BC的中线,
(3)作底边BC的高。以作顶角平分线为例,让一生板演,其他学生在练习本上写出完整的证明过程。以达到规范学生的解题步骤的目的。其他两种证法,让学生课下证明。这样,学生就证明了性质1,同时由于△BAD≌△CAD,也很容易得出等腰三角形的顶角平分线平分底边,并垂直于底边。用类似的方法还可以证明等腰三角形底边的中线平分顶角且垂直于底边,等腰三角形底边上的高平分顶角且平分底边,这也就证明了性质2。
(设计意图:教师精心设计问题串引导学生通过动手,观察,猜想,归纳,猜测出等腰三角形的性质,发展了学生的合情推理能力,同时也让学生明确,结论的正确性需要通过演绎推理加以证明。这样把对性质的证明作为探索活动的自然延续和必要发展,使学生感受到合情推理与演绎推理是相辅相成的两种形式,同时感受到探索证明同一个问题的不同思路和方法,发展了学生思维的广阔性和灵活性。)
(4)你能用符号语言表示性质1和性质2吗?
(设计意图:把文字语言转换为符号语言,让学生建立符号意识,这有助于学生理解符号的使用是数学表达和进行数学思考的重要形式。——
4、性质的应用:
例一:在等腰△ABC中,AB=AC,∠A=50°,则∠B=_____,∠C=______
变式练习:
1、在等腰中,∠A=50°,则 ∠B=___,∠C=___
2、在等腰中,∠A=100°,则∠B=___,∠C=___
设计意图:此例题的重点是运用等腰三角形“等边对等角”这一性质和三角形的内角和,突出顶角和底角的关系,如
例一,学生就比较容易得出正确结果,对变式练习(1)、(2)学生得出正确的结果就有困难,容易漏解,让学生把变式题与例一进行比较两题的条件,让学生认识等腰三角形在没有明确顶角和底角时,应分类讨论:变式1(如图)
①当∠A=50°为顶角时,则∠B=65°,∠C=65°。
②当∠A=50°为底角时,则∠B=50°,∠C=80°;或∠B=80°,∠C=50°。
变式2
①当∠A=100°为顶角时,则∠B=40°,∠C=40°。
②当∠A=100°为底角时,则△ABC不存在。由此得出,等腰三角形中已知一个角可以求出另两个角(顶角和底角的取值范围:0°<顶角<180°,0°<底角<90°)。
例二:
在等腰△ABC中,AB=5,AC=6,则△ABC的周长=_______
变式练习:
在等腰△ABC中,AB=5,AC=12,则 △ABC的周长=______
(设计意图:此例题的重点是运用等腰三角形的定义,以及等腰三角形腰和底边的关系,并强调在没有明确腰和底边时,应该分两种情况讨论。如例二,
①当AB=5为腰时,则三边为5,5,6;
②当AB=5为底时,则三边为6,6,5。
变式练习
①:当AB=5为腰时,三边为5,5,12;
②当AB=5为底时,三边为12,12,5。
此时同学们就会毫不犹豫地得出三角形的周长,这时老师就可以提出质疑,让同学们之间讨论(学生容易忽视三角形三边关系,看能否构成一个三角形)。
例三、如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数。
(例3是课本例题,有一定难度,让学生展开讨论,老师参与讨论,认真听取学生分析,引导学生找出角之间的关系,利用方程的思想解决问题,并书写出解答过程。本题运用了等腰三角形性质1,并体现了利用方程解决几何问题的思想。)
例四:
在△ABC中,点D在BC上,给出4个条件:①AB=AC②∠BAD=∠DAC③AD⊥BC④BD=CD,以其中2个条件作题设,另外2个条件作结论,你能写出一个正确的命题吗?看谁写得多。(分组讨论抢答)
5、巩固提高
(1)等腰三角形一腰上的高与另一腰的夹角为30°,则这个等腰三角形顶角为度。
(2)如图,在△ABC中,AB=AC,D是BC边上的中点,∠B=30。求∠1和∠ADC的度数。
(3)课本本章数学活动三“等腰三角形中相等的线段”
设计意图:
(1)题运用等腰三角形的性质1及等腰三角形一腰上的高的画法,由于题目没有图,要用到分类讨论的数学思想,学生能正确画出锐角和钝角三角形两种图形就容易得出结果,也渗透了一题多解。
(2)题同时运用了等腰三角形的性质1,性质2,还有三角形的内角和这三个知识点,培养学生对于知识的灵活运用,“讨论”是本章的数学活动3“等腰三角形中相等的线段”。与等腰性质的证明思路类似,先通过等腰三角形的对称性猜想距离是相等的,然后通过做辅助线构造全等三角形来进行严密的推理。更加说明了合情推理和演绎推理是相辅相成的。
6、课堂小结:不仅仅说你收获了什么,而是让学生从知识上,思想方法上,以及辅助线的做法上等方面具体总结一下。然后教师结合学生的回答完善本节知识结构。学生对于自己的疑惑提出小组内交流,还没解决则全班交流。
7、布置作业:
P55练习1、2、3题
P56习题1、4、6,(选做7,8题)
各位评委、老师:
大家好!
今天,我说课的课题是:人教版七年级数学下册第五章第一节《相交线》第一课时。这节课的主要内容包括:对顶角、邻补角的定义,对顶角的性质。下面,我将从背景分析,教学目标设计、课堂结构设计、教学媒体设计,教学过程设计、教学评价设计等几个方面对本课的设计进行说明。
一、背景分析
(一)学习任务分析
本节课是在学生已经学习了直线、射线、线段和角的有关知识的基础上,进一步研究平面内两条直线相交形成4个角的位置和数量关系,为今后学习几何奠定了基础,同时也为证明几何题提供了一个示范作用,本节对于进一步培养学生的识图能力,激发学生的学习兴趣具有推动作用,同时“对顶角相等”是今后证明其他命题成立的重要依据,因此本节课教学重点:邻补角和对顶角的概念及对顶角相等的性质。
(二)学生情况分析
七年级的孩子思维活跃,模仿能力强。同时他们也具备了一定的学习能力,在老师的指导下,能针对某一问题展开讨论并归纳总结。但是受年龄特征的影响,他们对知识迁移能力不强,推理能力还需进一步培养。因此本节课教学难点:写出规范的推理过程和对对顶角相等的探索。
教法:采用“问题情境-建立模型-解释、应用与拓展”的模式展开教学。学法:采用小组合作、自主学习、探究学习相结合。
二、教学目标设计
根据学生已有的知识基础,依据《教学大纲》的要求,确定本节课的教学目标为:
1、知识技能目标
(1)理解对顶角和邻补角的概念,能从图中辨别对顶角和邻补角。
(2)掌握“对顶角相等”的性质。
(3)理解“对顶角相等”的说理过程。
2、数学思考目标
(1)经历探究对顶角、邻补角的位置关系的过程,建立空间观念。
(2)通过分析具体图形得到对顶角、邻补角的概念,发展学生的抽象概括能力。
3、问题解决目标
通过小组学习等活动经历得出对顶角相等的过程,进一步提高学生应用已有知识解决数学问题的能力
4、情感态度目标
通过小组讨论,培养合作精神,让学生在探索问题的过程中,体验解决问题的方法和乐趣,增强学习兴趣;在解题中感受生活中数学的存在,体验数学中充满着探索和创造。
三、课堂结构设计
教学活动流程图
活动1:找出图形中的相交线活动2:认识邻补角和对顶角活动3:探究对顶角相等活动4:对顶角性质的运用活动5:巩固练习
活动6小结和布置作业
四、教学媒体设计
为了启发学生思维,激发学习兴趣,增强教学的直观性,我采用了直观的教具演示和多媒体、以及黑板相结合辅助教学。
教师准备:课件、长方形纸片、剪刀、自制相交线模型。学生准备:长方形纸片、剪刀。
五、教学过程设计
(一)创设情景,引入新课
多媒体显示立交桥、棋盘。
设问:从这些图片得出什么几何图形?学生会指出:相交线。从而引出了课题:相交线。让学生借助已有的几何知识从现实生活中发现数学问题,建立直观、形象的数学模型。
(二)新课探讨
1、对顶角、邻补角的位置关系。
让学生用已备好的剪刀剪纸片、向他们提出以下问题:
问题1:一把张开的剪刀能联想出什么几何图形?说一说,剪刀剪开纸片的过程中有关角的变化?
学生观察,很容易把剪刀的构造想象成两条相交直线。在剪刀剪纸片的过程中,把手和刀刃之间的夹角不断发生变化,但是这些角之间存在着不变的位置和数量关系。
通过生活中的情景抽象出几何图形,培养他们的空间观念,发展几何直觉。
问题2:任意两条相交的直线在形成的4个角中,两两相配共能组成几对角?各对角存在怎样的位置关系?
学生以事先分好的小组(四人为一组)为单位,通过观察,思考,讨论,并填好表格中的内容。接着我加以适当启发引导,让他们归纳出对顶角,邻补角的概念以及对顶角和邻补角的判定方法。然后让学生依据这些判定方法找出图中的对顶角和邻补角。有些同学可能概括得不太好,我将肯定他们探讨的热情和发言的勇气。同时,帮助他们进行纠正。让他们感觉到老师对他们不抛弃,不放弃,建立和谐民主的教学氛围。这样,提出问题,引导学生分析问题,以至解决问题,体现了新型的课改精神。
2、对顶角的大小关系
学生根据已有的知识可以肯定邻补角互补,也可以猜到对顶角相等,但不是很肯定。为了让学生的猜想得于肯定,在综合了学生讨论的.结果后我的做法如下:
(1)我演示教具(自己制作),也给学生操做。
(2)让学生通过量角器测量。
(3)让学生把画好的对顶角剪下来,进行翻折。
(4)引导学生根据同角的补角相等来推导对顶角相等的性质。
引导他们写出推理过程后,我在黑板上板出规范的过程。学生通过观察,比较,找出自己写的和老师写的有哪些异同点。
【问候】尊敬的各位评委老师,大家上午好!我是今天面试的1号考生,我面试的科目是小学数学,面试的课题是”亿以上数的认识”,接下来我将正式开始我的说课。
【教学背景分析】首先是对教材背景的分析,包括以下3个方面的内容:1是教材分析;2是教学目标;3是重难点。
教材分析:“亿以上数的认识”节选自人民教育出版社四年级上册第一单元第一节的内容,本节内容主要围绕培养学生认、读亿以上数的能力展开。并且经过前面对亿以内数的学习,学生们已积累大量了关于大数的知识,因此经过本节课的学习,可以进一步培养学生的数感和符号感。
过渡:以上便是对教材的分析,同时考虑到义务教育阶段数学教育应遵从学生的心理特点,多从实际出发,因此我制定了以下3个方面的教学目标:
教学目标:目标1:学生应理解数的意义,同时会用不同方法表示并读数;目标2:综合应用情景设置、小组合作的方法,提高对亿以上数的认、读能力;目标3:学生积极的参与教学活动,并能在学习中增强团队合作意识。
过渡:为了更好的完成以上教学目标和新课标要求,我设置了本节课的重点和难点。
重难点:本节课的重点应放在对照数位顺序表学会读写亿以上的数,而难点则是探索读书规律,培养学习迁移能力。
过渡:以上便是对教学背景的全面阐述,接下来我将就教学评价理念进行说明。
【教学评价】在本节课的讲授中,我综合应用学生互评,教师评价的方式,使得数学教学评价,不仅关注学生的学习结果,同时也关注他们在学习中的情感与态度。
过渡:根据以上教学背景及评价理念,接下来我将重点阐述我的教学过程
【教学过程】“数学课程标准”指出,数学教学应充分激发学生的积极性,多从实践出发,因此我的教学设计具体如下:
环节1:情景导入
一、说教材。
《角的画法》是学生直观认识锐角、直角和钝角和角的分类以及掌握了角的度量的基础上教学的,这节课的内容按给定的角的度数画角并能灵活的运用三角板中的角来拼出新的角。学习这些内容,对于进一步学习空间与图形的知识以及发展空间观念,都有十分重要的作用。
二、说教学目标。
知识与技能:
1、使学生会用量角器按指定度数画角,并通过练习进一步巩固角的有关知识。
2. 培养学生动手操作能力及分析、推理的能力。
3、培养学生自学能力。
过程与方法
通过学习,使学生经历画角和练习的全过程,进一步巩固角的有关知识。
情感态度和价值观:
使许感受数学知识与实际生活紧密联系,体会学习数学的乐趣。
三、说教学重点和难点。
教学重点:会用量角器按指定度数画角
教学难点:用三角板拼角以及灵活的培养学生动手操作的能力
四、说学情。
学生在日常生活中接触了很多大小不同的角,但对角的画法的知识接触很少。小学四年级的学生抽象思维能力虽然有一定的发展,但依然以形象具体思维为主,学生的分析、综合、归纳、概括的能力较弱,有待进一步提高。因此,在这节课中,我用最直观的教学和总结的三步法让学生感悟画角的方法,同时结合三角板让学生通过活动来拼出特殊的角。既让学生学会了画角,又锻炼了学生的动手操作能力。
五、说教法学法。
1、教法
本节课最突出的教法就是利用180°量角器直观动态的演示画角的步骤和方法。另外还运用了各种教具让学生来活动,充分发挥学生的主体作用。
2、学法
学法是学生再生知识的法宝。在整节课的探索活动中,我设计了自主学习、同桌合作学习和小组合作学习。在具体活动中培养学生观察、操作、自主探究、合作交流和归纳概括的能力。
六、说教学过程。
一、复习检查
1、说出下面的角各是哪一种角。
2、我们已经认识角,会用量角器量角,会进行角的分类,怎样画角呢?今天我们来学习画角。
板书课题:画角
二、探究新知
1、教学角的画法
问:量角的工具是什么?
说明要画一个指定度数的角,也要用量角器来画。
出示例题:画一个65°的角
(1)请同学自学角的画法,书P42
(2)试一试
让学生拿出量角器、铅笔、练习本,按书上的步骤一步一步地画一画。
(3)说一说
请学生说说你是怎么画的?学生一边说,教师在黑板上示范,最后教师讲解说明。
2、做一做(P42、2)
分别画出45°、105°的角
让一名较好的学生板演,其余学生在练习本上画。教师巡视,注意画的步骤。
3、(1)介绍三角板中的角,并让学生活动,看能组成那些角,
(2)让同学根据三角板中的角,画一些特殊的角。
三、巩固练习
1、P43、2选择合适的方法画出下列各角,并说说它们分别是哪一种角。
10° 45° 60° 90° 105° 120°
2、P44、6用一副三角尺,分别画出15°、75°、150° 165°的角。
四、课堂小结
这节课我们学习了什么?你有什么收获,说一说。
一、教材分析
1、在教材中的作用与地位
《菱形》紧接《矩形》一节之后。纵观整个初中平面几何教材,它是在学生掌握了平行四边形的性质与判定,又学习了特殊的平行四边形——矩形,具备了初步的观察、操作等活动经验的基础上讲授的。这一节课既是前面所学知识的继续,又是后面学习正方形等知识的基础,起着承前启后的作用。
2、从教材编写角度看
教材从学生年龄特征、文化知识的实际水平出发,先让学生动手做,动脑思考,然后与同伴交流、探索、总结归纳,升华得出菱形的性质及判定,这样的安排使抽象的定理让学生更易于接受,并能在整个的教学过程中真正享受到探索的乐趣。
我选择的是初二(1)班,该班级是年段的普通班,学生的情况是中等学生较多,尖子生只有个别,还有8至10名的学习上落后的学生。因此长期以来我都坚持做好培养学生良好的学习习惯和自主学习的能力的工作。
3、基于对教材和班级学情的分析,我认为本节课的教学有几个方面需要把握好的:
⑴本节课的课题是:探索菱形的重要性质;
⑵目标是:让学生能在动手实践过程中发现并理解菱形的性质;
⑶重点是:菱形的定义与性质;
⑷教学难点是:菱形性质的灵活运用。
4、根据新课程标准的要求及学生的实际情况,本节课我制定了如下教学目标:
(一)知识与技能
(1)知道菱形在现实生活中有广泛的应用。
(2)熟记菱形的有关性质和识别条件,并能灵活运用。
(二)过程与方法
经历探索菱形的性质和识别条件的过程,在观察、操作和分析的过程中,进一步增进主动探究的意识,体会说理的基本方法。
(三)情感态度价值观
体验数学活动来源于生活又服务于生活,体会菱形的图形美,提高学生的学习兴趣。
二、教法分析
1、教学设计思想
菱形是特殊的平行四边形,后继课要学的正方形具有菱形的一切性质。这节课教学时注重学生的探索过程,让观察、猜测、验证,获得知识,培养主动探究的能力。首先由生活中的图片引入,引起学生学习兴趣,发现菱形在生活中的广泛应用,然后设计几个探究性问题,让学生小组讨论,相互交流,形成共识。讲解例题时根据学生特点帮助他们分析题意,灵活运用菱形的性质与识别条件解题。
2、教学方法
针对本节课的特点,我准备采用“创设情境→观察探索→总结归纳→知识运用”为主线的教学模式,观察分析讨论相结合的方法。在教学过程中引导学生经过观察、思考、探索、交流获得知识,形成能力。在教学过程中注意创设思维情境,坚持学生主体,教师主导,在合作、交流的气氛下进行师生互动,培养学生的自学能力和创新意识,让学生在老师的指导下自始至终处于一种积极思维、主动探究的学习状态。同时借助多媒体进行演示,以增加课堂容量和教学的直观性,更好的理解菱形的性质,解决教学难点。
三、学法指导
在本节课的教学中,要帮助学生学会运用观察、分析、比较、归纳、概括等方法,得出解决问题的方法,使传授知识与培养能力融为一体,使学生不仅学到科学的探究方法,而且体验到探究的甘苦,领会到成功的喜悦。
四、教学过程
(一)引入新课
在复习了平行四边形与矩形的性质后创设教学情景。如:出示我国古代文物越王勾践剑的图片,指出菱形花纹,再展示生活中的菱形图案的应用图片。由此引出课题,可以吸引同学的注意,使其产生学习菱形的兴趣。之后,我安排了由
平行四边形到菱形的动态演示,得出菱形的定义。随后又展示了一组生活中的有关菱形的图片,使学生认识到菱形在生活中的广泛应用,并欣赏到菱形的图形美。
设计意图:从生活实际出发,首先吸引住学生的注意力,激起学生的学习欲望。著名教育家苏霍姆林斯基说过:如果教师不想方设法使学生进入情绪高昂和智力振奋的内心状态就急于传授知识,那么这种知识只能使人产生冷漠的态度,而不动感情的脑力劳动就会带来疲惫。
(二)菱形性质的探索
菱形性质的探索分成两方面,一是菱形的特殊性(与平行四边形不同的性质);二是菱形的对称性。对于这个地方,主要采取学生自主探究的形式,通过观察思考与分析,同学间互相交流,分小组进行总结归纳。教师在巡视中进行个别指导。在探索过程中,鼓励学生力求寻找多种方法解决问题,同时还可以组织组与组的评比,这样也能培养他们的竞争意识,然后每组由一名学生代表发言,让学生锻炼自己的表达能力,让学生的个性得到充分的展示。最后教师与学生一起总结归纳,得出菱形的性质。
设计理念:这一教学活动的设计主要为了确保学生主体作用得到充分发挥,让学生从被动学到主动学,从接受知识到探索知识,从个人学习到合作交流。这样的活动教学将会真正焕发出课堂教学的活力,从而在课堂教学中注入一种新课程理念:给学生一个空间,让他们自己往前走;给学生一个时间,让他们自己去安排;给学生一个问题,让他们自己去找答案;给学生一个条件,让他们自己去锻炼;给学生一个题目,让他们自己去创造;给学生一个机会,让他们自己去抓住。
(三)题目训练
为了进一步落实教学目标,让学生在学懂学会的基础上融会贯通,我安排了坡度适中,题型多样的系列题组。
1.请你当裁判
与定义、性质等相关的一些判断题。
设计意图:让学生着重讲清判断的理由,此题直接运用菱形的定义与性质,起到及时巩固的作用,同时锻炼学生的语言表达能力。
2.议一议
性质的简单运用。
设计意图:稍微加深,进一步巩固菱形的性质,并能初步运用。
3.练一练
菱形与直角三角形等知识的综合运用。并由此总结菱形的面积公式。即菱形的面积等于对角线乘积的一半。
设计意图:这组练习包含了例题。要求学生不但可以顺利完成简单的基础填空练习,而且能有条理的写出例题的解题过程。教师及时查漏补缺,规范解题格式。此题完成后,学生已顺利达到教学目标。
4.学以致用
设计花坛,修建小路,求路长与花坛面积。这是一道实际应用问题。
设计意图:目的是让学生了解数学问题来源于生活实际,同时又运用到实际生活中。让学生充分体验历经困难探索结果而轻松用于实际的快乐感觉。
(四)小结、布置作业
菱形的性质与识别条件,由学生进行小结。布置书上课后习题,体会本节课你所获得的成功经验,写好数学日记,与同学交流。
设计意图:让学生写数学日记这种作业形式,能够培养学生善于归纳总结的能力,逐步养成良好的学习习惯。
一、说教材:
(一)教材分析
“解决问题”是人教版义务教育课程标准实验教科书五年级数学上册第二单元的内容。本节内容安排了两个例题,分2课时进行教学,今天我说的是其中的第2课时。解决问题是小数除法单元的一小节,让学生学习用小数乘、除法计算解决常见的实际问题,培养学生解决问题的能力。这部分内容是在学生已经积累了一定的数量关系及解决问题的经验,了解了同一问题可以有不同的解决方法的基础上学习的。这节课主要是呈现生活情景,提供生活信息,收集、整理数学信息,发现问题,提出问题,分析问题的实际应用。不仅可以使学生体会计算在解决问题中的实际作用和价值,同时可使学生获得解决问题策略的训练。
(二)学情分析
本节课解决的数学问题,学生在以往的学习过程中已经学过“四舍五入法”,在生活的实践体悟中都曾渗及过,有一定的整理信息分析问题和解决问题的.思想方法经验,培养学生数学思维能力和解决问题的能力。认识数学与人类生活的密切联系,了解数学的价值,激发学生。
二、说教学目标:
1、知识与技能:能正确运用小数除法解决实际问题;培养学生观察问题、分析问题的能力;培养学生运用相关知识解决生活中的实际问题的能力。
2、过程与方法:采用独立思考和小组交流的方式进行教学。
3、情感、态度与价值观:通过学习,让学生懂得解决问题的多样化,体会小数除法的应用价值。
三、教学重难点:
重点:能正确运用小数除法,培养观察、分析归纳问题的能力。
难点:提高学生分析归纳的能力,培养学生运用相关知识解决实际问题的能力。
四、说教法、学法:
根据对本课教学过程的预设,在实际教学过程中将尽可能结合学生的生活经验,为学生创设生活和活动情景,以“创境激趣”为关键,以“解决问题”为核心,以“自主探索”为主线展开的多维合作活动。为他们提供各种机会,采用独立思考和小组交流的方式进行教学,让学生经历思维冲撞、自主探究、合作交流的活动,使学生体验探索的过程,体会“学数学的乐趣”。
五、说教学过程:
(一)创设情景、收集信息
1、播放课件,出示生活情景图。
2、导入,出示课题:解决问题。
这节课我是从生活中的“倒油”的情境引入新课,使学生体会到数学问题从生活中来,生活中处处有数学,而生活中许多问题的确要用数学去解决,不但提高了学生的学习兴趣,而且使学生理解了生活中的数学,体会到数学的价值。
(二)整理信息、提出问题
1、课件出示例题
(1)大家能从中得到什么数学信息?
(2)提出问题。
(设计意图:创设提问题的情境,体会提问题在生活中的应用,提生活中的数学问题,感受数学问题在生活中的存在)
(三)自主合作、探究问题
在探究新知的过程中,我首先让学生独立列式解答,求出和这两个商,由于学生在前面已经学过取商的近似值的一般方法(四舍五入法),因此可能会出现可以分装在6个瓶子和包装17个礼盒的结果,这两个结果与实际不相符,引发学生的质疑和争议。借此时机组织学生在组内交流探究,让他们继续争议下去,在辩论中明确为什么要7个瓶子和只能包装16个礼盒,使学生印象深刻,方法的形成水到渠成,同时也让学生深刻地理解了为什么不用“四舍五入法”取近似值,而要根据实际情况取商近似值的道理。
本节课我通过实物的演示,帮助学生对“进一法”和“去尾法”取近似值的理解,既直观又形象地证实了生活中确实存在这两种情况,也引发学生今后在探究有些数学问题时,也可以通过动手操作或实验来验证事实的必要性。
我通过学生对两个实例的比较,在比较中揭示两种取商近似值的方法,使学生对方法的理解更加深刻,同时也更体会了要根据不同的情况,采用不同的方法取商的近似值。
(四)交流方法、解决问题
1、指名说板,呈现不同的解题过程。
2、小结:分析问题时,我们要弄清楚题目的数量关系,再选择适当的方法进行解答,怎样取“近似值”心中都要很清楚。
(设计意图:将小组共同的认识成果转化为全班共有,激励创新,拓展思维。呈现学生的不同解法,让学生在体验到探究的乐趣后,享受成功的快乐。形成发现问题,解决问题,体验成功,发现问题的良性循环。让学生学会带着问题走进课堂,又带着问题走出课堂,走向更广阔的空间。
(五)尝试训练、反馈评价
课件出示33页“做一做”:其目的是归纳取商的近似值的方法,即一般情况采用“四舍五入法”,特殊情况要根据实际情况采用“进一法”和“去尾法”,使得取商的近似值的方法更加完善,一目了然。在整个练习中充分让学生说一说用什么方法取商的近似值,为什么?这样有利于学生灵活应用方法,依据实际情况取商的近似值。
(六)深化练习,学会分析
出示P35页的第7题,小组讨论交流,再汇报,集体订正。
设想是数学教学从生活入手,最后又回归生活,更加充分地体现了数学与生活的紧密联系。当然,体会数学的意义和价值,联系生活理解掌握知识,这并不是我们学习的最终目标,最终目标是能应用所学的数学知识,数学思维,数学方法,去观察、分析现实生活,再去创造,去解决的日常生活中的问题,进而形成勇于创新的精神,形成技能。
(七)小结:这节课你学会了什么?生讨论,师再总结。
(八)布置课外作业:35页6、7题。
一、教材分析 :
(一)、本节课在教材中的地位作用
“勾股定理的逆定理”一节,是在上节“勾股定理”之后,继续学习的一个直角三角形的判断定理,它是前面知识的继续和深化,勾股定理的逆定理是初中几何学习中的重要内容之一,是今后判断某三角形是直角三角形的重要方法之一,在以后的解题中,将有十分广泛的应用,同时在应用中渗透了利用代数计算的方法证明几何问题的思想,为将来学习解析几何埋下了伏笔,所以本节也是本章的重要内容之一。课标要求学生必须掌握。
(二)、教学目标:根据数学课标的要求和教材的具体内容,结合学生实际我确定了本节课的教学目标。知识技能:
1、理解勾股定理的逆定理的证明方法并能证明勾股定理的逆定理。
2、掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一个三角形是不是直角三角形
过程与方法:
1、通过对勾股定理的逆定理的探索,经历知识的发生、发展与形成的过程
2、通过用三角形三边的数量关系来判断三角形的形状,体验数与形结合方法的应用
3、通过勾股定理的逆定理的证明,体会数与形结合方法在问题解决中的作用,并能运用勾股定理的逆定理解决相关问题。
情感态度:
1、通过用三角形三边的数量关系来判断三角形的形状,体验数与形的内在联系,感受定理与逆定理之间的和谐及辩证统一的关系
2、在探究勾股定理的逆定理的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神
(三)、学情分析: 尽管已到初二下学期学生知识增多,能力增强,但思维的局限性还很大,能力也有差距,而勾股定理的逆定理的证明方法学生第一次见到,它要求根据已知条件构造一个直角三角形,根据学生的智能状况,学生不容易想到,因此勾股定理的逆定理的证明又是本节的难点,这样如何添辅助线就是解决它的关键,这样就确定了本节课的重点、难点和关键。
重点: 勾股定理逆定理的应用 难点: 勾股定理逆定理的证明
关键: 辅助线的添法探索
二、教学过程 :
本节课的设计原则是:使学生在动手操作的基础上和合作交流的良好氛围中,通过巧妙而自然地在学生的认识结构与几何知识结构之间筑了一个信息流通渠道,进而达到完善学生的数学认识结构的目的。
(一)、复习回顾: 复习回顾与勾股定理有关的内容,建立新旧知识之间的联系。
(二)、创设问题情境
一开课我就提出了与本节课关系密切、学生用现有的知识可探索却又解决不好的问题,去提示本节课的探究宗旨。(演示)古代埃及人把一根长绳打上等距离的13个结,然后用桩钉如图那样的三角形,便得到一个直角三角形。这是为什么?……。这个问题一出现马上激起学生已有知识与待研究知识的认识冲突,引起了学生的重视,激发了学生的兴趣,因而全身心地投入到学习中来,创造了我要学的气氛,同时也说明了几何知识来源于实践,不失时机地让学生感到数学就在身边。
(三)、学生在教师的指导下尝试解决问题,总结规律(包括难点突破)
因为几何来源于现实生活,对初二学生来说选择适当的时机,让他们从个体实践经验中开始学习,可以提高学习的主动性和参与意识,所以勾股定理的逆定理不是由教师直接给出的,而是让学生通过动手折纸在具体的实践中观察满足条件的三角形直观感觉上是什么三角形,再用直角三角形插入去验证猜想。
这样设计是因为勾股定理逆定理的证明方法是学生第一次见到,它要求按照已知条件作一个直角三角形,根据学生的智能状况学生是不容易想到的,为了突破这个难点,我让学生动手裁出了一个两直角边与所折三角形两条较小边相等的直角三角形,通过操作验证两三角形全等,从而不仅显示了符合条件的三角形是直角三角形,还孕育了辅助线的添法,为后面进行逻辑推理论证提供了直观的数学模型。
接下来就是利用这个数学模型,从理论上证明这个定理。从动手操作到证明,学生自然地联想到了全等三角形的性质,证明它与一个直角三角形全等,顺利作出了辅助直角三角形,整个证明过程自然、无神秘感,实现了从生动直观向抽象思维的转化,同时学生亲身体会了动手操作——观察——猜测——探索——论证的全过程,这样学生不是被动接受勾股定理的逆定理,因而使学生感到自然、亲切,学生的学习兴趣和学习积极性有所提高。使学生确实在学习过程中享受到自我创造的快乐。
在同学们完成证明之后,可让他们对照课本把证明过程严格的阅读一遍,充分发挥教课书的作用,养成学生看书的习惯,这也是在培养学生的自学能力。
(四)、组织变式训练
本着由浅入深的原则,安排了三个题目。(演示)第一题比较简单,让学生口答,让所有的学生都能完成。第二题则进了一层,字母代替了数字,绕了一个弯,既可以检查本课知识,又可以提高灵活运用以往知识的能力。第三题则要求更高,要求学生能够推出可能的结论,这些作法培养了学生灵活转换、举一反三的能力,发展了学生的思维,提高了课堂教学的效果和利用率。在变式训练中我还采用讲、说、练结合的方法,教师通过观察、提问、巡视、谈话等活动、及时了解学生的学习过程,随时反馈,调节教法,同时注意加强有针对性的个别指导,把发展学生的思维和随时把握学生的学习效果结合起来。
(五)、归纳小结,纳入知识体系
本节课小结先让学生归纳本节知识和技能,然后教师作必要的补充,尤其是注意总结思想方法,培养能力方面,比如辅助线的添法,数形结合的思想,并告诉同学今天的勾股定理逆定理是同学们通过自己亲手实践发现并证明的,这种讨论问题的方法是培养我们发现问题认识问题的好方法,希望同学在课外练习时注意用这种方法,这都是教给学习方法。
(六)、作业布置
由于学生的思维素质存在一定的差异,教学要贯彻“因材施教”的原则,为此我安排了两组作业。A组是基本的思维训练项目,全体都要做,这样有利于学生学习习惯的培养,以及提高他们学好数学的信心。B组题适当加大难度,拓宽知识,供有能力又有兴趣的学生做,日积月累,对训练和培养他们的思维素质,发展学生的个性有积极作用。
三、说教法、学法与教学手段
为贯彻实施素质教育提出的面向全体学生,使学生全面发展主动发展的精神和培养创新活动的要求,根据本节课的教学内容、教学要求以及初二学生的年龄和心理特征以及学生的认知规律和认知水平,本节课我主要采用了以学生为主体,引导发现、操作探究的教学方法,即不违反科学性又符合可接受性原则,这样有利于培养学生的学习兴趣,调动学生的学习积极性,发展学生的思维;有利于培养学生动手、观察、分析、猜想、验证、推理能力和创新能力;有利于学生从感性认识上升到理性认识,加深对所学知识的理解和掌握;有利于突破难点和突出重点。
此外,本节课我还采用了理论联系实际的教学原则,以教师为主导、学生为主体的教学原则,通过联系学生现有的经验和感性认识,由最邻近的知识去向本节课迁移,通过动手操作让学生独立探讨、主动获取知识。
总之,本节课遵循从生动直观到抽象思维的认识规律,力争最大限度地调动学生学习的积极性;力争把教师教的过程转化为学生亲自探索、发现知识的过程;力争使学生在获得知识的过程中得到能力的培养。
一、说内容
《找次品》是人教版数学五年级下册第七单元数学广角的内容。现实生活生产中的“次品”有许多种不同的情况,有的是外观与合格品不同,有的是所用材料不符合标准等。这节课的学习中要找的次品是外观与合格品完全相同,只是质量有所差异,且事先已经知道次品比合格品轻(或重),另外在所有待测物品中只有唯一的一个次品。
二、说教材
“找次品”的教学,旨在通过“找次品”渗透优化思想。优化是一种重要的数学思想方法,运用它可迅速有效地解决实际问题。此前学习过的“沏茶”,“田忌赛马”等都运用了简单的优化思想方法,学生已经具有一定的优化意识。本节课以“找次品”这一操作活动为载体,让学生在感受解决问题策略的多样性的基础上,再通过归纳、推理的方法体会运用优化策略解决问题的有效性,感受到数学的魅力。
仔细阅读教材后,发现教材的编排结构比较重视数学知识的逻辑顺序。例1安排了从5个物品中找次品,仅要求学生说出找次品的方法,不需要进行规律的总结,让学生感受到问题解决策略的多样性。例2安排了9个待测物品,要求学生归纳出解决问题的最优策略,让学生经历多样化过渡到优化的思维过程。教材这样安排,考虑了学生的思维过程,但是对于刚经历找次品的学生来说,为什么要找次品?5个次品是否难度过大?找次品平均分成三份是学生在观察9个待测物品的测量过程中,比较得出的,“为什么平均分成三份是最优方案”教材没有涉及,学生的疑惑是否会更多呢?
基于上述考虑,我把教学目标定位在:
1、让学生初步认识“找次品”这类问题的基本解决手段和方法。
2、学生通过观察、猜测、试验、推理等活动,体会解决问题策略的多样性及运用优化的方法解决问题的有效性。
3、通过观察多个待测物品时,让学生体会到最优化策论的成因。
三、说教法
在教材中,非常突出的一点是教材比较重视新课程背景下学生之间的小组讨论和探究。确实经过小组讨论,学生之间可以互相补充,迅速达到多种策略的有效补充。但是同时存在的问题是,该教材内容偏难,如果仅通过交流,势必优秀生言之灼灼,而后进生听之糟糟。因此我在执教时选用了学生安静思考,人人动手的形式,让每个学生都动起来,再视情况交流。在反馈中逐步得到提高。
四、说设计
(一)课前游戏。课前游戏主要是让学生明白至少需要多少次的含义,为新课教学扫清学生认知上的障碍,出现不必要的过多的纠缠。
(二)情景导入,激发兴趣。
(设计意图:“美国挑战者号失事”作为引入,让学生了解事故的原因是由一个不合格的零件造成的,让学生从血的教训中,懂得了次品的危害,领悟到严格检验的必要性,同时把人文教育渗透在教学中。)
(三)自主探索用天平找次品的基本方法。(安排了3个层次)
首先安排了从3个正品中找出一个次品来,就是从3瓶菠萝片中找出一瓶少了3片的(这样设计贴近学生的实际生活,为学生喜闻乐见,也为下面探究如何找次品作好铺垫,充分激发学生的求知欲和表现欲。增加课前准备题三瓶中找次品,利于学生进入研究状态,也考虑照顾到中下层次学生。)
紧接着我刻意安排了4这个环节(设计意图:多了4这一环节,它的作用就是为后面研究5和9中找次品打基础,看似渺小,其实起奠基作用,让学生感悟从4个中找就要比3个中找多了1次。为接下去体现划归的数学思想做准备。也为最佳策略的成因探索埋下伏笔)
最后安排5个中找次品,仅要求学生说出找次品的方法,不需要进行规律的总结,让学生感受到问题解决策略的多样性。
(四)尝试解决实际问题,寻找最优方法。
首先通过学生自己动手操作,尝试称出从9个中找出次品的方法,以及发现最佳方法。教师引领学生如果是3的倍数的数,为什么要分成3份,以及为什么而且要平均分成3份对最佳策略的成因作出推理和解释。接着用12去验证发现的规律的正确性。最后运用规律解决27、81、243个…中去找次品。让学生感悟这里其实有规律可寻。
(五)留与悬念,课余激发探索兴趣。
这里主要探索非3倍数的最佳策略并且完善找次品的规律,即不能平均分成3份的,尽量平均分成3份,保证有两份数量相同,并且只和第三组差1个,所用的次数是最少的。这是否是最优的方法。
(六)学习反思:
对全课进行输理,回顾找次品的方法和最佳策略。
五、说体会
教完以后,体会最深的就是这个难度的教材,教到什么度是合适的?对于最佳策略的成因还有没有更好的、更有说服力的相通的解释方法?教师的反馈怎么样能更有层次一些?课上下来还是觉得问题多多,但自己觉得还是在云里雾里。很希望能得到专家和同行们的帮助和指点。谢谢各位!
一、说教材及学生学情分析<
推荐阅读:
将本文的Word文档下载到电脑
推荐度: