2023-06-29
2023-06-27
2023-03-18
2023-07-05
2023-03-19
更新时间:2024-01-18 17:18:46 发布时间:24小时内 作者:文/会员上传 下载docx
2023-06-29
2023-06-27
2023-03-18
2023-07-05
2023-03-19
数学建模论文格式模板以及要求
导语:伴随着当今社会的科学技术的飞速发展,数学已经渗透到各个领域,成为人们生活中非常重要的一门学科。下面是我分享的数学建模论文格式模板及要求,欢迎阅读!
(一)论文形式:科学论文
科学论文是对某一课题进行探讨、研究,表述新的科学研究成果或创见的文章。
注意:它不是感想,也不是调查报告。
(二)论文选题:新颖,有意义,力所能及。
要求:
有背景.
应用问题要来源于学生生活及其周围世界的真实问题,要有具体的对象和真实的数据。理论问题要了解问题的研究现状及其理论价值。要做必要的学术调研和研究特色。
有价值
有一定的应用价值,或理论价值,或教育价值,学生通过课题的研究可以掌握必须的科学概念,提升科学研究的能力。
有基础
对所研究问题的背景有一定了解,掌握一定量的参考文献,积累了一些解决问题的方法,所研究问题的数据资料是能够获得的。
有特色
思路创新,有别于传统研究的新思路;
方法创新,针对具体问题的特点,对传统方法的改进和创新;
结果创新,要有新的,更深层次的结果。
问题可行
适合学生自己探究并能够完成,要有学生的特色,所用知识应该不超过初中生(高中生)的能力范围。
(三)(数学应用问题)数据资料:来源可靠,引用合理,目标明确
要求:
数据真实可靠,不是编的数学题目;
数据分析合理,采用分析方法得当。
(四)(数学应用问题)数学模型:通过抽象和化简,使用数学语言对实际问题的一个近似描述,以便于人们更深刻地认识所研究的对象。
要求:
抽象化简适中,太强,太弱都不好;
抽象出的数学问题,参数选择源于实际,变量意义明确;
数学推理严格,计算准确无误,得出结论;
将所得结论回归到实际中,进行分析和检验,最终解决问题,或者提出建设性意见;
问题和方法的进一步推广和展望。
(五)(数学理论问题)问题的研究现状和研究意义:了解透彻
要求:
对问题了解足够清楚,其中指导教师的作用不容忽视;
问题解答推理严禁,计算无误;
突出研究的特色和价值。
(六)论文格式:符合规范,内容齐全,排版美观
1. 标题:是以最恰当、最简明的词语反映论文中主要内容的逻辑组合。
要求:反映内容准确得体,外延内涵恰如其分,用语凝练醒目。
2. 摘要:全文主要内容的简短陈述。
要求:
1)摘要必须指明研究的主要内容,使用的主要方法,得到的主要结论和成果;
2)摘要用语必须十分简练,内容亦须充分概括。文字不能太长,6字以内的文章摘要一般不超过3字;
3)不要举例,不要讲过程,不用图表,不做自我评价。
3. 关键词:文章中心内容所涉及的重要的单词,以便于信息检索。
要求:数量不要多,以3-5各为宜,不要过于生僻。
(七). 正文
1)前言:
问题的背景:问题的来源;
提出问题:需要研究的内容及其意义;
文献综述:国内外有关研究现状的回顾和存在的问题;
概括介绍论文的内容,问题的结论和所使用的方法。
2)主体:
(数学应用问题)数学模型的组建、分析、检验和应用等。
(数学理论问题)推理论证,得出结论等。
3)讨论:
解释研究的结果,揭示研究的价值, 指出应用前景, 提出研究的不足。
要求:
1)背景介绍清楚,问题提出自然;
2)思路清晰,涉及到得数据真是可靠,推理严密,计算无误;
3)突出所研究问题的难点和意义。
5. 参考文献:
是在文章最后所列出的文献目录。他们是在论文研究过程中所参考引用的主要文献资料,是为了说明文中所引用的的论点、公式、数据的来源以表示对前人成果的尊重和提供进一步检索的线索。
要求:
1)文献目录必须规范标注;
2)文末所引的文献都应是论文中使用过的文献,并且必须在正文中标明。
(七)数学建模论文模板
1. 论文标题
摘要是论文内容不加注释和评论的简短陈述,其作用是使读者不阅读论文全文即能获得必要的信息。
一般说来,摘要应包含以下五个方面的内容:
①研究的主要问题;
②建立的什么模型;
③用的什么求解方法;
④主要结果(简单、主要的);
⑤自我评价和推广。
摘要中不要有关键字和数学表达式。
数学建模竞赛章程规定,对竞赛论文的评价应以:
①假设的合理性
②建模的创造性
③结果的正确性
④文字表述的清晰性 为主要标准。
所以论文中应努力反映出这些特点。
注意:整个版式要完全按照《全国大学生数学建模竞赛论文格式规范》的要求书写,否则无法送全国评奖。
一、 问题的重述
数学建模竞赛要求解决给定的问题,所以一般应以“问题的重述”开始。
此部分的目的是要吸引读者读下去,所以文字不可冗长,内容选择不要过于分散、琐碎,措辞要精练。
这部分的内容是将原问题进行整理,将已知和问题明确化即可。
注意:在写这部分的内容时,绝对不可照抄原题!
应为:在仔细理解了问题的基础上,用自己的语言重新将问题描述一篇。应尽量简短,没有必要像原题一样面面俱到。
二、 模型假设
作假设时需要注意的问题:
①为问题有帮助的所有假设都应该在此出现,包括题目中给出的假设!
②重述不能代替假设! 也就是说,虽然你可能在你的问题重述中已经叙述了某个假设,但在这里仍然要再次叙述!
③与题目无关的假设,就不必在此写出了。
三、 变量说明
为了使读者能更充分的理解你所做的工作,
一、小学数学建模
_数学建模_已经越来越被广大教师所接受和采用,所谓的_数学建模_思想就是通过创建数学模型的方式来解决问题,我们把该过程简称为_数学建模_,其实质是对数学思维的运用,方法和知识解决在实际过程中遇到的数学问题,这一模式已经成为数学教育的重要模式和基本内容。叶其孝曾发表《数学建模教学活动与大学数学教育改革》,该书指出,数学建模的本质就是将数学中抽象的内容进行简化而成为实际问题,然后通过参数和变量之间的规律来解决数学问题,并将解得的结果进行证明和解释,因此使问题得到深化,循环解决问题的过程。
二、小学数学建模的定位
1.定位于儿童的生活经验
儿童是小学数学的主要教学对象,因此数学问题中研究的内容复杂程度要适中,要与儿童的生活和发展情况相结合。_数学建模_要以儿童为出发点,在数学课堂上要多引用发生在日常生活中的案例,使儿童在数学教材上遇到的问题与现实生活中的问题相结合,从而激发学生学习的积极性,使学生通过自身的经验,积极地感受数学模型的作用。同时,小学数学建模要遵循循序渐进的原则,既要适合学生的年龄特征,赋予适当的挑战性;又要照顾儿童发展的差异性,尊重儿童的个性,促进每一个学生在原有的基础上得到发展。
2.定位于儿童的思维方式
小学生的特点是年龄小,思维简单。因此小学的数学建模必须与小学生的实际情况相结合,循序渐进的进行,使其与小学生的认知能力相适应。
实际情况表明,教师要想使学生能够积极主动的思考问题,提高他们将数学思维运用到实际生活中的能力,就必须把握好儿童在数学建模过程中的情感、认知和思维起点。我们以《常见的数量关系》中关于速度、时间和路程的教学为例,有的老师启发学生与二年级所学的乘除法相结合,使乘除法这一知识点与时间、速度和路程建立了关联,从而使_数量关系_与数学原型_一乘两除_结合起来,并且使学生利用抽象与类比的思维方法完成了_数量关系_的_意义建模_,从而创建了完善的认知体系。
三、小学_数学建模_的教学策略
1.培育建模意识
当前的小学数学教材中,大部分内容编排的思路都是以建模为基础,其内容的开展模式主要是_生活情景到抽象模型,然后到模型验证,最后到模型的运用和解释_.培养建模思维的关键是对教材的解读是否从建模出发,使教材中的建模思想得到充分的开发。然后对教材中比较现实的问题进行充分的挖掘,将数学化后的实际问题创建模型,最后解决问题。教师要提高学生对建模的.意识与兴趣就要充分挖掘教材,指导学生去亲身体会、思考沟通、动手操作、解决问题。其次,通过引入贴近现实生活、生产的探索性例题,使学生了解数学是怎样应用于解决这些实际问题的。同时,让学生在利用数学建模解决实际问题的过程中理解数学的应用价值和社会功能,不断增强数学建模的意识。
2.体验建模过程
在数学的建模过程中,要将生活中含有数学知识与规律的实际问题抽象化,从而建成数学模型。然后利用数学规律对问题进行推理,解答出数学的结果后再进行证明和解释,从而使实际问题得到合理的解决。我们以解决问题的方法为例,使学生能够解决题目不是教学的唯一目的,使学生通过对数学问题的研究和体验来提升自己_创建_新模型的能力。使学生在不断的提出与解决问题的过程中培养成自主寻找数学模型和数学观念的习惯。如此一来,当学生遇到陌生的问题情境,甚至是与数学无关的实际问题时,都能够具备_模型_思想,处理问题的过程能具备数学家的_模型化_特点,从而使_模型思想_影响其生活的各个方面。
3.在数学建模中促进自主性建构
要使_知识_与_应用_得到良好的结合就必须提高学生积极构建数学模型的能力。我们要将数学教学的重点放在对学生观察、整合、提炼_现实问题_的能力培养上来。教学过程中,通过对日常问题的适当修改,使学生的实际生活与数学相结合,从而提升学生发现和提出问题,并通过创建模型解决问题的能力,为学生提供能够自主创建模型的条件。
我们以《比较》这课程内容为例,我们通过_建模_这一教学方法,培养学生对_>____
四、总结
数学建模是将实际生活与数学相结合的有效途径和方法。学生在创建数学模型的过程中,其思维方式也得到了锻炼。小学阶段的教学,其数学模型的构建应当以儿童文化观为基础,其目的主要是培养儿童的建模思想,这也是提升小学生学习数学积极性,提升课堂文化气息的有效方法和途径。
我们引入自相关回归系数ρρ,当ρ=0ρ=0表示无自相关性,ρ>0ρ>0表示存在正自相关性,ρ<0ρ<0表示存在负自相关性
Q1:如何估计ρρ?
A1:D-W统计量
D-W统计量的计算
由D-W值的大小确定自相关性:
那如何知道dL和dU呢?这是可以查表的。
Q2:如何消除自相关性?
A2:广义分差法
我们通过上面可以求得DW值和dL以及dU,那我们计算ρ=1−DW/2ρ=1−DW/2就可以知道是否存在自相关性了
例如我们样本容量n=20,回归变量数目k=3,a= ,我们可以查到临界值dL=, dU=
ρ=1−DW/2=ρ=1−DW/2=,说明存在正的自相关性。
于是我们就可以得到新的模型:
我们可以根据这个模型我们可以再做一次自相关性的检测,发现新的模型已经没有自相关性了。
最后我们就可以根据新的自相关模型进行对下一年数据的预测了。
根据对未来国民生产总值(GNP)及物价指数 (PI)的估计,预测未来投资额
该地区连续20年的统计数据
首先建立基本的统计回归模型:
t−年份,yt−投资额,x1t−GNP,x2t−物价指数t−年份,yt−投资额,x1t−GNP,x2t−物价指数
模型为:yt=β0+β1x1t+β2x2t+ϵyt=β0+β1x1t+β2x2t+ϵ
根据数据得到的结果:
此模型不足的地方:
1>没有考虑时间序列数据的滞后性影响
2>可能忽视了随机误差存在自相关;如果存在自相关性,用此模型会有不良后果
摘要:
层次分析法是美国学者于20世纪70年代提出了以定性与定量相结合,系统化、层次化分析解决问题的方法,简称AHP。传统的层次分析法算法具有构造判断矩阵不容易、计算繁多重复且易出错、一致性调整比较麻烦等缺点。本文利用微软的Excel电子表格的强大的函数运算功能,设置了简明易懂的计算表格和步骤,使得判断矩阵的构造、层次单排序和层次总排序的计算以及一致性检验和检验之后对判断矩阵的调整变得十分简单。
关键词:
Excel 模型 层次分析法
一、层次分析法的基本原理
层次分析法是解决定性事件定量化或定性与定量相结合问题的有力决策分析方法。它主要是将人们的思维过程层次化、,逐层比较其间的相关因素并逐层检验比较结果是否合理,从而为分析决策提供较具说服力的定量依据。层次分析法不仅可用于确定评价指标体系的权重,而且还可用于直接评价决策问题,对研究对象排序,实施评价排序的评价内容。
用AHP分析问题大体要经过以下七个步骤:
(1)建立层次结构模型;
首先要将所包含的因素分组,每一组作为一个层次,按照最高层、若干有关的中间层和最低层的形式排列起来。对于决策问题,通常可以将其划分成层次结构模型,如图1所示。
其中,最高层:表示解决问题的目的,即应用AHP所要达到的目标。
中间层:它表示采用某种措施和政策来实现预定目标所涉及的中间环节,一般又分为策略层、约束层、准则层等。
最低层:表示解决问题的措施或政策(即方案)。
(2)构造判断矩阵;
设有某层有n个元素,X={Xx1,x2,x3……xn}要比较它们对上一层某一准则(或目标)的影响程度,确定在该层中相对于某一准则所占的比重。(即把n个因素对上层某一目标的影响程度排序。上述比较是两两因素之间进行的比较,比较时取1~9尺度。
用 表示第i个因素相对于第j个因素的比较结果,则
A则称为成对比较矩阵
比较尺度:(1~9尺度的含义)
如果数值为2,4,6,8表示第i个因素相对于第j个因素的影响介于上述两个相邻等级之间。
倒数:若j因素和i因素比较,得到的判断值为
(3)用和积法或方根法等求得特征向量 W(向量 W 的分量 Wi 即为层次单排序)并计算最大特征根λmax;
(4)计算一致性指标 CI、RI、CR 并判断是否具有满意的一致性。其中RI是
平均随机一致性指标 RI 的数值:
矩阵阶数34567891011
CR=CI/RI,一般地当一致性比率CR<时,认为A的不一致程度在容许范围之内,可用其归一化特征向量作为权向量,否则要重新构造成对比较矩阵,对A加以调整。
(5)层次总排序,如表1所示。
(6)层次总排序一致性检验,如前所述。
(7)根据需要进行调整 对于层次单排序结果和层次总排序结果,只要符合满意一致性即随机一致性比例 CR≤ 就可以结束计算并认同排序结果,否则就要返回调整不符合一致性的判断矩阵。
二、层次分析法 Excel 模型设计过程
案例:某人欲到苏州、杭州、桂林三地旅游,选择要考虑的因素包括四个方面:景色、费用、居住和饮食,用层次分析法选一个适合自己情况的旅游点。
⒈根据题意可以建立层次结构模型如图1所示。
⒉Excel实现过程
⑴将准则层的各因素对目标层的影响两两比较结果输入Excel表格中,进行单排序及一致性检验如图2所示。 其中:F4=PRODUCT(B4:E4),表示B4、C4、D4、E4各单元格连乘,复制公式至F7单元格。 G4=POWER(F4,1/4),表示将F4单元格的值开4次方,复制公式至G7单元格 G8=SUM(G4:G7),表示求和 H4=G4/$G$8,复制公式至H7单元格 I4= B4*H$4+C4*H$5+D4*H$6+E4*H$7,复制公式至I7单元格 J4= I4/H4 λmax= AVERAGE(J4:J7)。 CI=(J8-4)/(4-1),CR=CI/;,即通过一致性检验。
⑵按同样的方法分别计算出方案层对景色、费用、居住、饮食的判断矩阵及一致性检验,如图3所示。
⑶层次总排序,由于苏州数值最高,故选择的旅游地为苏州,如图4所示。 其中:C44=K14,G44=$C$43*C44,H48={SUM($C$43:$F$43*C48:F48)},注意:这是一个数组函数需按ctrl+shift+enter三键确定。
三、基于Excel的层次分析法模型设计的优势
(1)层次分析法 Excel 算法以广泛使用的办公软件 Excel 作为运算平台,无需掌握深奥的计算机专业知识和术语,有很好的推广应用基础。
(2)层次分析法 Excel算法的所有计算结果和数据均保留最高位数的精确度,可以不在任何环节进行四舍五入,当然也可以根据需要设置小数位,从而最大限度地减少了误差。
(3)层次分析法 Excel 算法的计算步骤设计成环环相扣、步步跟踪,步骤设计完毕后,可以按需要填充或变更,其余数据和结果均可以在填充或变更判断矩阵之后立即得出,使得整个运算过程简捷、轻松。另外,相似的矩阵区和计算区可以通过复制完成,只需改动少量单元格。
(4)层次分析法 Excel 算法将一致性检验也同时计算出来,决策者和判断者可以即时知道自己的判断是否具有满意的一致性并可以随时和简单地进行调整直到符合满意一致性。
(5)如果一致性指标不能令人满意,用本方法可以比较容易地实现对判断矩阵的调整,可以实现对判断的“微调” ,使得逼近最大程度的“满意一致性”甚至“完全一致性”而又不必进行繁重运算成为可能。
在人类历史发展和社会生活中,数学发挥着不可替代的作用,同时也是学习和研究现代科学技术必不可少的基本工具。关于数学方面的论文我们可以写哪些呢?下面我给大家带来关于数学方向的优秀论文题目有哪些,希望能帮助到大家!
最全组合数学论文题目
1、并行组合数学模型方式研究及初步应用
2、数学规划在非系统风险投资组合中的应用
3、金融经济学中的组合数学问题
4、竞赛数学中的组合恒等式
5、概率 方法 在组合数学中的应用
6、组合数学中的代数方法
7、组合电器局部放电超高频信号数学模型构建和模式识别研究
8、概率方法在组合数学中的某些应用
9、组合投资数学模型发展的研究
10、高炉炉温组合预报和十字测温数学建模
11、证券组合的风险度量及其数学模型
12、组合数学中的Hopf方法
13、PAR方法在组合数学问题中的应用研究
14、概率方法在组合数学及混合超图染色理论中的应用
15、一些算子在组合数学中的应用
16、陀螺/磁强计组合定姿方法的相关数学问题研究
17、高中数学人教版新旧教材排列组合内容的比较研究
18、生物絮凝吸附-曝气生物滤池组合工艺处理生活污水的数学模拟研究
摘要:
将数学建模思想融入高等数学的教学中来,是目前大学数学教育的重要教学方式。建模思想的有效应用,不仅显著提高了学生应用数学模式解决实际问题的能力,还在培养大学生发散思维能力和综合素质方面起到重要作用。本文试从当前高等数学教学现状着手,分析在高等数学中融入建模思想的重要性,并从教学实践中给出相应的教学方法,以期能给同行教师们一些帮助。
关键词:
数学建模;高等数学;教学研究
一、引言
建模思想使高等数学教育的基础与本质。从目前情况来看,将数学建模思想融入高等教学中的趋势越来越明显。但是在实际的教学过程中,大部分高校的数学教育仍处在传统的理论知识简单传授阶段。其教学成果与社会实践还是有脱节的现象存在,难以让学生学以致用,感受到应用数学在现实生活中的魅力,这种教学方式需要亟待改善。
二、高等数学教学现状
高等数学是现在大学数学教育中的基础课程,也是一门必修的课程。他能为其他理工科专业的学生提供很多种解题方式与解题思路,是很多专业,如自动化工程、机械工程、计算机、电气化等必不可少的基础课程。同时,现实生活中也有很多方面都涉及高数的运算,如,银行理财基金的使用问题、彩票的概率计算问题等,从这些方面都可以看出人们不能仅仅把高数看成是一门学科而已,它还与日常生活各个方面有重要的联系。但现在很多学校仍以应试教育为主,采取填鸭式教学方式,加上高数的教材并没有与时俱进,将其与生活的关系融入教材内,使学生无法意识到高数的重要性以及高数在日常生活中的魅力,因此产生排斥甚至对抗的心理,只是在临考前突击而已。因此,对高数进行教学改革是十分有必要的,而且怎么改,怎么让学生发现高数的魅力,并积极主动学习高数也是作为教师所面临的一个重大问题。
三、将数学建模思想融入高等数学的重要性
第一,能够激发学生学习高数的兴趣。建模思想实际上是使用数学语言来对生活中的实际现象进行描述的过程。把建模思想应用到高等数学的学习中,能够让学生们在日常生活中理解数学的实际应用状况与解决日常生活问题的方便性,让学生们了解到高数并不只是一门课程,而是整个日常生活的基础。例如,在讲解微分方程时,可以引入一些历史上的一些著名问题,如以Vanmeegren伪造名画案为代表的赝品鉴定问题、预报人口增长的Malthus模型与Logistic模型等。 这样,才能激发出学生对高等数学的兴趣,并积极投入高等数学的学习中来。
第二,能够提高学生的数学素质。社会的高速发展不断要求学生向更全面、更高素质的方向发展。这就要求学生不仅要懂得专业知识,还要能够将专业知识运用到实际生活中,拥有解决问题的头脑和实际操作的技能。这些其实都可以通过建模思想在高等数学课堂中实现。高等数学的包容性、逻辑性都很强。将建模思想融入高等数学的教学中,既能提高学生的数学素质,还能锻炼学生综合分析问题,解决问题的能力。通过理论与生活实践相结合,达到社会发展的要求,提高自身的社会竞争力。
第三,能够培养学生的综合创新能力。“万众创新”不仅仅是一个口号,而应该是现代大学生应该具备的一种能力。将数学建模思想融入高等数学教学中,能让大学生从实际生活出发,多方位、多角度考虑问题,提高学生的创新能力。学生的潜力是可以在多次的建模活动中挖掘出来的。因此教师应多组织建模活动,让学生从实际生活中组建材料,不断创新思维,找到解决问题的方式与方法。
四、将建模思想融入高等数学的实践方法
第一,转变教学理念。改变传统教学思想与教育方式,提高学生建模的积极性,增强学生对建模方式的认同。教师不能只是单一的讲解理论知识,还需要引导学生亲自体验,从互动的教学过程中,理解建模思想的重要性。
第二,在生活问题中应用建模思想。其实,很多日常生活中的很多例子,都是可以解决课堂上的问题的。数学是来源于生活的。作为教师,应该主动引领学生参与实践活动,将课本的知识尽量与日常问题联系到一起,发动学生主动用建模思想解决问题,提高创新能力,从不同的角度,以不同的方式提高解决问题的能力。例如,学校要组织元旦晚会,需要学生去采购必需品。超市有多种打折的方式,这时候教师就可以引导学生使用建模思想,要求去学生以模型来分析各种打折方式的优缺点,并选择最优惠的方式买到最优质的晚会用品。这样学生才会发现建模的乐趣,并了解如何在生活案例中应用建模思想。
第三,不断巩固和提高建模应用。数学建模思想融入生活实践不是一蹴而就的,而是一个不断实践、循序渐进的过程。人们也不能为了应用建模思想而将日常生活生拉硬套。教师也应该尽可能多地搜集生活中的案例,将建模思想与生活实践更灵活地联系在一起。不断地由浅入深,将建模思想牢牢地印在学生的脑海中。并根据每个学生的独特性,不断开发学生的创新潜力和发散思维能力,提高逻辑思维能力和空间想象力,在实践中巩固深化建模思想。五、结束语综上所述,将建模思想融入高等数学教学中,能显著提高课堂教学质量和学生解决问题的能力,因此教师应从整体上把握高数的教学体系,让学生逐步建立建模思维,不断深化和巩固用建模思想解决问题的能力。只有这样,融入数学建模思想的高等数学的教学效果才会起到应有的作用。
一、数学建模与数学建模意识
数学建模是对实际问题本质属性进行抽象而又简洁刻划的数学符号、数学式子、程序或图形,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。而应用各种知识从实际问题中抽象、提炼出数学模型的过程,我们称之为数学建模。它的灵魂是数学的运用,它就象阵阵微风,不断地将数学的种子吹撒在时间和空间的每一个角落,从而让数学之花处处绽放。
高中数学课程新标准要求把数学文化内容与各模块的内容有机结合,数学建模是其中十分重要的一部分。作为基础教育阶段――高中,我们更应该重视学生的数学应用意识的早期培养,我们应该通过各种各样的形式来增强学生的应用意识,提高他们将数学理论知识结合实际生活的能力,进而激发他们学习数学的兴趣和热情。
二、高中数学教师必须提高自己的建模意识、积累自己的建模知识。
我们在教学内容和要求上的变化,更意味着教育思想和教学观念的更新。数学建模源于生活,用于生活。高中数学教师除需要了解数学科学的发展历史和发展动态之外,还需要不断地学习一些新的数学建模理论,并且努力钻研如何把高中数学知识应用于现实生活。作为高中数学教师,在日常生活上必须做数学的有心人,不断积累与数学相关的实际问题。
三、在数学建模活动中要充分重视学生的主体性
提高学生的主体意识是新课程改革的基本要求。在课堂教学中真正落实学生的主体地位,让学生真正成为数学课堂的主人,促进学生自主地发展,是现代数学课堂的重要标志,是高中数学素质教育的核心思想,也是全面实施素质教育的关键。高中数学建模活动旨在培养学生的探究能力和独立解决问题的能力,学生是建模的主体,学生在进行建模活动过程中表现出的主体性表现为自主完成建模任务和在建模活动中的互相协作性。中学生具有好奇、好问、好动、好胜、好玩的心理特点,思维开始从经验型走向理论型,出现了思维的独立性和批判性,表现为喜欢独立思考、寻根究底和质疑争辩。因此,教师在课堂上应该让学生充分进行自主体验,在数学建模的实践中运用这些数学知识,感受和体验数学的应用价值。
教师可作适当的点拨指导,但要重视学生的参与过程和主体意识,不能越俎代庖,目的是提高学生进行探究性学习的能力、提高学生学习数学的兴趣。
四、处理好数学建模的过程与结果的关系
我国的中学数学新课程改革已进入全面实施阶段。新的高中数学课程标准强调要拓宽学生的数学知识面,改善学生的学习方式,关注学生的学习情感和情绪体验,培养学生进行探究性学习的习惯和能力。数学建模活动是一种使学生在探究性活动中受到数学教育的学习方式,是运用已有的数学知识解决问题的教与学的双边活动,是学生围绕某个数学问题自主探究、学习的过程。新的高中数学课程标准要求把数学探究、数学建模的思想以不同的形式渗透在各模块和专题内容之中,突出强调建立科学探究的学习方式,让学生通过探究活动来学习数学知识和方法,增进对数学的理解,体验探究的乐趣。 五、数学建模教学与素质教育
数学建模问题贴近实际生活,往往一个问题有很多种思路,有较强的趣味性、灵活性,能激发学生的学习兴趣,可以触发不同水平的学生在不同层次上的创造性,使他们有各自的收获和成功的体验。由于给了学生一个纵情创造的空间,就为学生提供了展示其创造才华的机会,从而促进学生素质能力的培养和提高,对中学素质教育起到积极推动作用。
1.构建建模意识,培养学生的转换能力
_曾说过:“由一种形式转化为另一种形式不是无聊的游戏而是数学的杠杆,如果没有它,就不能走很远。”由于数学建模就是把实际问题转换成数学问题,因此如果我们在数学教学中注重转化,用好这根有力的杠杆,对培养学生思维品质的灵活性、创造性及开发智力、培养能力、提高解题速度是十分有益的。学生对问题的研究过程,无疑会激发其学习数学的主动性,且能开拓学生的创造性思维能力,养成善于发现问题、独立思考的习惯。教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就能用数学模型得到解决,这样,学生就会产生创新意识。
2.注重直觉思维,培养学生的想象能力
众所周知,数学史上不少的数学发现都来源于直觉思维,如笛卡尔坐标系、歌德巴赫猜想等,应该说它们不是任何逻辑思维的产物,而是数学家通过观察、比较、领悟、突发灵感发现的。通过数学建模教学,使学生有独到的见解和与众不同的思考方法,如善于发现问题,沟通各类知识之间的内在联系等是培养学生创新思维的核心。七年级的教材里,以游戏的方式编排了简单而有趣的概率知识,如转盘游戏,扔硬币来验证出现正面或反面的概率等等。通过有趣的游戏,激起了学生学习的兴趣,并了解到概率统计知识在社会中应用的广泛性和重要性。
3.灌输“构造”思想,培养学生的创新能力
“一个好的数学家与一个蹩脚的数学家之间的差别,就在于前者有许多具体的例子,而后者则只有抽象的理论。”我们前面讲到,“建模”就是构造模型,但模型的构造并不是一件容易的事,又需要有足够强的构造能力,而学生构造能力的提高则是学生创造性思维和创造能力的基础:创造性地使用已知条件,创造性地应用数学知识。
摘要:
现代物流产业是当今新型的经济产业,国民经济建设中,其已几乎扩展到国民经济的各个领域,具有广阔的发展前景和巨大的发展潜力。同时现代物流业具有极强的综合性,因而正确的物流需求预测对于物流产业的宏观政策制定,抑或是微观层面的企业规划和经营,都具有指导作用。货物周转量是物流需求非常重要的一项指标,文章结合物流需求的特点,通过货物周转量对具有交通中枢地位的武汉市物流需求影响进行预测。本文运用货物周转量,生产总值两指标,结合20_-20_年武汉地区GDP值,基于双变量线性回归模型方法,对交通枢纽武汉进行物流需求分析预测,以说明武汉未来的物流需求情况。
关键词:
货物周转量;回归模型;物流需求预测
引言
武汉,位于中国腹地中心,物流资源丰富,全国重要的交通枢纽,素有“九省通衢”之称。其在发展现代物流业方面具有得天独厚的优势,因而武汉提出了以发展物流来实现本地经济的“跨越式发展”,并已通过把现代物流业作为新的经济增长点列入全市发展计划之中。
然而,作为新型的经济产业,现代物流业具有很强的综合性。无论是在物流产业的宏观决策上,还是物流企业规划和经营的微观层面,都需要以正确的预测为先导。我国经济已由改革开放后的经济快速增长阶段进入到中速发展过程中,在经济调整和转型之中,已充分认识到现代物流业的重要性,高效的现代物流业对于地区经济发展或者国家经济进步的支撑作用越来越明显,。因此,在这样的背景之下,以合理的物流需求预测为基础所作出科学的决策,是保证物流产业健康发展的必要措施。
一、物流需求预测
物流需求预测,就是利用所能涉及到的历史资料和市场信息,利用一定的经验判断、技术方法和预测模型,对未来的物流需求状况进行科学的分析、估算和推断。物流需求预测的目的主要是确定物流服务供应系统所需的能力,同时为其建设规模提供数据方面的依据。
物流需求预测的意义在于指导和调节人们的物流管理活动,从而能够采取适当的策略和措施,以谋求最大的利益。其作用主要体现在:
(一)物流需求预测是是物流管理的必要环节
对物流发展中的各个因素实施控制是物流企业进行规划和经营的前提,而这种控制需要依靠预测来未完成。因此,物流需求预测是物流管理的必要环节,一切的管理活动必须从对信息的分析和预测开始。
(二)物流需求预测能够改善物流管理
物流管理活动中,若能预测了解和把握市场需求的未来变化,那么相关企业就能够采取有效的战略。可以说,物流需求预测是物流管理的重要手段。
(三)物流需求预测能够为物流发展规划和管理经营决策提供重要的科学依据
物流需求预测可以描绘出市场需求的变动趋势,从而推测出物流发展需求的趋势,并进行比较系统的全面的分析和预见,以避免决策的片面性的局限性。
二、武汉物流需求的双变量线性回归模型预测
(一)回归模型的一般形式
回归分析预测法是一种重要的市场预测方法,其是在分析市场现象自变量和因变量之间相关关系的基础上,来建立变量之间的回归方程,并将其作为预测模型。
回归模型的一般形式为:
式①中,X为自变量,Y为因变量, 和 为未知系数, 为误差分量。当然,模型具有实用价值的前提是拟合度良好且回归系数显著。
(二)回归模型的预测
1.指标的确定
货物周转量,是指各种运输工具在报告期内实际运送的每批货物重量分别乘其运送距离的累计数。其不仅包括了运输对象的数量,还包括了运输距离因素,因而能比较全面地反映运输生产结果。其是反映物流业需求的重要指标。
货物周转量的影响因素很多,通过参考大量文献可知,货物周转量与生产总值存在显著的相关性,综合考虑数据的可查询性,本文选取武汉市近年来的货物周转量和生产总值作为变量,进行双变量线性回归模型分析并进行相应预测。
以货物周转量为因变量,武汉生产总值为自变量。下表是武汉市20_年到20_年的相关原始数据:
2.回归模型设定
一般来说,EXCEL和SPSS在预测应用方面均存在各自的优缺点,鉴于此,本文将二者结合起来应用,充分利用SPSS能够准确容易获取预测值,且模型多样化,快速方便的优势以及EXCEL在绘制图形方面简便的特点,将首先用SPSS进行相关预测模型的选择和预测值确定,再用EXCEL进行预测值绘图,从而简单快速的完成相关预测。则可以设定双变量线性回归模型为:
其中,生产总值为 ,货物周转量为 。
用EXCEL作货物周转量和生产总值的散点图,如图1所示:
3.回归分析
根据上述数据,通过统计软件进行线性回归分析:
4.回归方程有效性检验
(1)拟合优度的检验
则从表中可知,相关性系数为R=,相关性明显;同时调整后的拟合系数R2=,说明在货物周转量的总变差中,模型所作出的解释部分达到了,即模型的拟合效果显著。
(2)回归参数的显著性检验
回归方程的显著性检验结果见上表,统计量F=,相应的置信水平为;,结果表明回归方程非常显著;同时常数和自变量系数的回归方程检验的置信水平由表2知为;,即模型的系数显著。
(3)模型预测效果的检验 通过统计软件得出相应回归模型的同时,将该模型从20_-20_年的预测值保存到数据视图中,如下表所示 从表中可知,货物周转量的绝对误差最大值为;相对误差最;平均相对误差为,可以预见,模型总体预测效果良好。 再从预测值和实际值的曲线图形来比较,将原始数据和预测值数据复制到EXCEL中,利用EXCEL绘图简便的特点,绘制中货物周转量的实际值图形和预测值图形,如下图所示 图2 预测值与实际值的曲线比较 从图中可知,回归预测曲线拟合情况良好,从而进一步证明了回归预测模型的有效性。
三、结论分析
通过对武汉20_-20_年相关数据进行线性回归预测,能够得到如下结论:
第一,由回归预测方程 可知,货物周转量与生产总值(GDP)呈正相关关系,具体表现为一单位的GDP增长,能够引起单位的货物周转量;同时由图2的曲线图可知,货物周转量存在明显的上升趋势。
第二,货物周转量是一个总体规模性指标,是从总量上反映物流需求。
这种方法比较概括,虽存在缺陷,但对物流需求的宏观把握,制定宏观物流发展战略还是颇具价值;同时,本文只研究了生产总值对货物周转量的影响,实际上,货物周围量的影响因素很多,比如宏观面上的经济政策,气候条件,微观层面上的运输距离以及货运总量等;另外,货物周转量只是代表物流需求的一个量,并不能完全代表物流需求,因而需要根据实际情况适实地对其加以修正。
参考文献:
[1]王雪瑞,王昭君.基于双变量线性回归模型的物流需求预测[J].物流科技. 20_(09).
[2]杨帅.武汉市物流需求预测[J].当代经济.20_(10).
[3]汪宇翰.预测物流需求的一元线性回归分析方法 [J].商场现代化.20_(13).
[4]李振,王兴秋,吴耀华.货运量回归预测工具EXCEL和SPSS结合应用研究[J].物流科技.20_(08).
[5]张文彤,闫洁.SPSS统计分析基础教程[M]. 北京:高等教育出版社,2004.
随着科学技术特别是信息技术的高速发展,数学建模的应用价值越来越得到众人的重视,
数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,以下是一篇关于数学建模教育开展策略探究的论文 范文 ,欢迎阅读参考。
大学数学具有高度抽象性和概括性等特点,知识本身难度大再加上学时少、内容多等教学现状常常造成学生的学习积极性不高、知识掌握不够透彻、遇到实际问题时束手无策,而数学建模思想能激发学生的学习兴趣,培养学生应用数学的意识,提高其解决实际问题的能力。数学建模活动为学生构建了一个由数学知识通向实际问题的桥梁,是学生的数学知识和应用能力共同提高的最佳结合方式。因此在大学数学教育中应加强数学建模教育和活动,让学生积极主动学习建模思想,认真体验和感知建模过程,以此启迪创新意识和 创新思维 ,提高其素质和创新能力,实现向素质教育的转化和深入。
一、数学建模的含义及特点
数学建模即抓住问题的本质,抽取影响研究对象的主因素,将其转化为数学问题,利用数学思维、数学逻辑进行分析,借助于数学 方法 及相关工具进行计算,最后将所得的答案回归实际问题,即模型的检验,这就是数学建模的全过程。一般来说_,数学建模_包含五个阶段。
1.准备阶段
主要分析问题背景,已知条件,建模目的等问题。
2.假设阶段
做出科学合理的假设,既能简化问题,又能抓住问题的本质。
3.建立阶段
从众多影响研究对象的因素中适当地取舍,抽取主因素予以考虑,建立能刻画实际问题本质的数学模型。
4.求解阶段
对已建立的数学模型,运用数学方法、数学软件及相关的工具进行求解。
5.验证阶段
用实际数据检验模型,如果偏差较大,就要分析假设中某些因素的合理性,修改模型,直至吻合或接近现实。如果建立的模型经得起实践的检验,那么此模型就是符合实际规律的,能解决实际问题或有效预测未来的,这样的建模就是成功的,得到的模型必被推广应用。
二、加强数学建模教育的作用和意义
(一) 加强数学建模教育有助于激发学生学习数学的兴趣,提高数学修养和素质
数学建模教育强调如何把实际问题转化为数学问题,进而利用数学及其有关的工具解决这些问题, 因此在大学数学的教学活动中融入数学建模思想,鼓励学生参与数学建模实践活动,不但可以使学生学以致用,做到理论联系实际,而且还会使他们感受到数学的生机与活力,激发求知的兴趣和探索的欲望,变被动学习为主动参与其效率就会大为改善。数学修养和素质自然而然得以培养并提高。
(二)加强数学建模教育有助于提高学生的分析解决问题能力、综合应用能力
数学建模问题来源于社会生活的众多领域,在建模过程中,学生首先需要阅读相关的文献资料,然后应用数学思维、数学逻辑及相关知识对实际问题进行深入剖析研究并经过一系列复杂计算,得出反映实际问题的最佳数学模型及模型最优解。因此通过数学建模活动学生的视野将会得以拓宽,应用意识、解决复杂问题的能力也会得到增强和提高。
(三)加强数学建模教育有助于培养学生的创造性思维和创新能力
所谓创造力是指_对已积累的知识和 经验 进行科学地加工和创造,产生新概念、新知识、新思想的能力,大体上由感知力、 记忆力 、思考力、 想象力 四种能力所构成_[1].现今教育界认为,创造力的培养是人才培养的关键,数学建模活动的各个环节无不充满了创造性思维的挑战。
很多不同的实际问题,其数学模型可以是相同或相似的,这就要求学生在建模时触类旁通,挖掘不同事物间的本质,寻找其内在联系。而对一个具体的建模问题,能否把握其本质转化为数学问题,是完成建模过程的关键所在。同时建模题材有较大的灵活性,没有统一的标准答案,因此数学建模过程是培养学生创造性思维,提高创新能力的过程[2].
(四)加强数学建模教育有助于提高学生科技论文的撰写能力
数学建模的结果是以论文形式呈现的,如何将建模思想、建立的模型、最优解及其关键环节的处理在论文中清晰地表述出来,对本科生来说是一个挑战。经历数学建模全过程的磨练,特别是数模论文的撰写,学生的文字语言、数学表述能力及论文的撰写能力无疑会得到前所未有的提高。
(五)加强数学建模教育有助于增强学生的团结合作精神并提高协调组织能力建模问题通常较复杂,涉及的知识面也很广,因此数学建模实践活动一般效仿正规竞赛的规则,三人为一队在三天内以论文形式完成建模题目。要较好地完成任务,离不开良好的组织与管理、分工与协作[3].
三、开展数学建模教育及活动的具体途径和有效方法
(一)开展数学建模课堂教学
即在课堂教学中,教师以具体的案例作为主要的教学内容,通过具体问题的建模,介绍建模的过程和思想方法及建模中要注意的问题。案例教学法的关键在于把握两个重要环节:
案例的选取和课堂教学的组织。
教学案例一定要精心选取,才能达到预期的教学效果。其选取一般要遵循以下几点。
1. 代表性:案例的选取要具有科学性,能拓宽学生的知识面,突出数学建模活动重在培养兴趣提高能力等特点。
2. 原始性:来自媒体的信息,企事业单位的 报告 ,现实生活和各学科中的问题等等,都是数学建模问题原始资料的重要来源。
3. 创新性:案例应注意选取在建模的某些环节上具有挑战性,能激发学生的创造性思维,培养学生的创新精神和提高创造能力。
案例教学的课堂组织,一部分是教师讲授,从实际问题出发,讲清问题的背景、建模的要求和已掌握的信息,介绍如何通过合理的假设和简化建立优化的数学模型。还要强调如何用求解结果去解释实际现象即检验模型。另一部分是课堂讨论,让学生自由发言各抒己见并提出新的模型,简介关键环节的处理。最后教师做出点评,提供一些改进的方向,让学生自己课外独立探索和钻研,这样既突出了教学重点,又给学生留下了进一步思考的空间,既避免了教师的_满堂灌_,也活跃了课堂气氛,提高了学生的课堂学习兴趣和积极性,使传授知识变为学习知识、应用知识,真正地达到提高素质和培养能力的教学目的[4].
(二)开展数模竞赛的专题培训指导工作
建立数学建模竞赛指导团队,分专题实行教师负责制。每位教师根据自己的专长,负责讲授某一方面的数学建模知识与技巧,并选取相应地建模案例进行剖析。如离散模型、连续模型、优化模型、微分方程模型、概率模型、统计回归模型及数学软件的使用等。学生根据自己的薄弱点,选择适合的专题培训班进行学习,以弥补自己的不足。这种针对性的数模教学,会极大地提高教学效率。
文章以数学建模课程为载体,以培养学生创新能力为核心,从完善课程教学体系入手,将数学建模培养创新能力贯穿在教学的全过程,探索课程教学模式对培养创新人才的新措施。
课程是高校教育教学活动的载体,是学生掌握理论基础知识和提高综合运用知识能力的重要渠道,学生创新能力的形成必定要落实在课程教学活动的全过程中。“数学建模”是一门理论与实践紧密结合的数学基础课程,课程的许多案例来源于实际生活,其学习过程让学生体验了数学与实际问题的紧密联系。数学建模课程从教学理念及教学方法上有别于传统的数学课程,它是将培养学生的创新实践能力作为主要任务,利用课程体系完成创新能力的培养。由于课程教学内容系统性差,建模方法涉及多个数学分支,课程结束后还存在着学生面对实际问题无从下手解决的现象。通过深入研究课程教学体系,将传授知识和实践指导有机结合,实施以数学建模课程教学为核心,以竞赛和创新实验为平台的新课程教学模式。
一、数学建模课程对培养创新人才的作用
(一)提高实践能力
数学建模课程案例主要来源于多领域中的实际问题,它不仅仅是单一的数学问题,具有数学与多学科交叉、融合等特点。课程要求学生掌握一般数学基础知识,同时要进一步学习如微分方程、概率统计、优化理论等数学知识。这就需要学生有自主学习“新知识”的能力,还要具备运用综合知识解决实际问题的能力。因此,数学建模课程对于大学生自学能力和综合运用知识能力的培养具有重要作用。
(二)提高创新能力
数学建模方法是解决现实问题的一种量化手段。数学建模和传统数学课程相比,是一种创新性活动。面对实际问题,根据数据和现象分析,用数学语言描述建模问题,再进行科学计算处理,最后反馈到现实中解释,这一过程没有固定的标准模式,可以采用不同方法和思路解决同样的问题,能锻炼学生的想象力、洞察力和创新能力。
(三)提高科学素质
二、基于数学建模课程教学全方位推进创新能力培养的实践
(一)分解教学内容增强课程的适应性
根据学生的接受能力及数学建模的发展趋势,在保持课程理论体系完整性和知识方法系统性的基础上,教学内容分解为课堂讲授与课后实践两部分。课堂教师讲授数学建模的基础理论和基本方法,精讲经典数学模型及建模应用案例,启发学生数学建模思维,激发学生数学建模兴趣;课后学生自己动手完成课堂内容扩展、模型运算及模型改进等,教师答疑解惑。课堂教学注重数学建模知识的学习,课后教学重在知识的运用。随着实际问题的复杂化和多元化,基本的数学建模方法及计算能力满足不了实际需求。课程教学中还增加了图论、模糊数学等方法,计算机软件等初级知识。
(二)融入新的教学方法提高学生的参与度
1.课堂教学融入引导式和参与式教学方法。数学建模涉及的知识很多是学生学过的,对学生熟悉的方法,教师以引导学生回顾知识、增强应用意识为主,借助应用案例重点讲授问题解决过程中数学方法的应用,引导学生学习数学建模过程;对于学生不熟悉的方法,则要先系统讲授方法,再分析講解方法在案例中的应用,引导学生根据问题寻找方法。此外,为了增强学生学习的积极性和效果,组织1~2次专题研讨,要求学生参与教学过程,教师须做精心准备,选择合适教学内容、设计建模过程、引导学生讨论、纠正错误观点。
2.课后实践实施讨论式和合作式教学方法。在课后实践教学中,提倡学生组成学习小组,教师参与小组讨论共同解决建模问题。学生以主动者的角色积极参与讨论、独立完成建模工作,并进行小组建模报告,教师给予点评和纠正。对那些没有彻底解决的问题,鼓励学生继续讨论完善。通过学生讨论、教师点评、学生完善这一过程,极大地调动了学生参与讨论、团队合作的热情。同时,教师鼓励学生自己寻找感兴趣的问题,用数学建模去解决问题。
3.课程综合实践推进研究式教学方法。指导学生在参加数学建模竞赛、学习专业知识、做毕业设计及参与教师科研等工作中,学习深入研究建模解决实际问题的方法,通过多层次建模综合实践能提高分析问题、选择方法、实施建模、问题求解、编程实践、计算模拟的综合能力,进而提高创新能力。
(三)融合多种教学手段,提高课程的实效性
问题的提出:假设一个公司需要预测不同价格和广告费用下的牙膏的销售量,我们需要怎么建立模型呢?
假设我们拿到的数据如下:
我们可以根据数据建立一个基本的模型:
y:公司牙膏销售量y:公司牙膏销售量
x1:价格差x1:价格差
x2:公司广告的费用x2:公司广告的费用
模型为:y=β0+β1x1+β2x2+β3x22+ϵy=β0+β1x1+β2x2+β3x22+ϵ
求解这个模型我们会得到下面的结果:
这说明y的可以由模型确定,x2对因变量y 的影响不太显著(因为β2的置信区间包括0点β2的置信区间包括0点)。
这些数据具体到公司的销售量到底意味着什么呢?
假设我们把控制价格差x1=,投入广告费x2=650x2=650万,根据我们的模型可以求出y的值为(百万支),销售量的预测区间为[,]。
那么我们就有95%把握知道销售量在百万支以上。
一、在高等数学教学中运用数学建模思想的重要性
(1)将教材中的数学知识运用现实生活中的对象进行还原,让学生树立数学知识来源于现实生活的思想观念。
(2)数学建模思想要求学生能够通过运用相应的数学工具和数学语言,对现实生活中的特定对象的信息、数据或者现象进行简化,对抽象的数学对象进行翻译和归纳,将所求解的数学问题中的数量关系运用数学关系式、数学图形或者数学表格等形式进行表达,这种方式有利于培养、锻炼学生的数学表达能力。
(3)在运用数学建模思想获得实际的答案后,需要运用现实生活对象的相关信息对其进行检验,对计算结果的准确性进行检验和确定。该流程能够培养学生运用合理的数学方法对数学问题进行主动性、客观性以及辩证性的分析,最后得到最有效的解决问题的方法。
二、高等数学教学中数学建模能力的培养策略
1.教师要具备数学建模思想意识
在对高等数学进行教学的过程中,培养学生运用数学建模思想,首先教师要具备足够的数学建模意识。教师在进行高等数学教学之前,首先,要对所讲数学内容的相关实例进行查找,有意识的实现高等数学内容和各个不同领域之间的联系;其次,教师要实现高等数学教学内容与教学要求的转变,及时的更新自身的教学观念和教学思想。例如,教师细心发现现实生活中的小事,然后运用这些小事建造相应的数学模型,这样不仅有利于营造活跃的课堂环境,而且还有利于激发学生的学习兴趣。
2.实现数学建模思想和高等数学教材的互相结合
3.理清高等数学名词的概念
高等数学中的数学概念是根据实际需要出现的,所以在数学的教学中,教师要引起从实际问题中提取数学概念的整个过程,对学生应用数学的兴趣进行培养。例如在高等数学
教材中,导数和定积分是其中的比较重要的概念,因此,教师在进行教学时,要引导学生理清这两个的概念。比如导数概念是由几何曲线中的切线斜率引导出来的,定积分的概念是由局部取近似值引出的,将常量转变为变量。
4.加强数学应用问题的培养
高等数学中,主要有以下几种应用问题:
(1)最值问题
在高等数学教材中,最值问题是导数应用中最重要的问题。教师在教学过程中通过对最值问题的解题步骤进行归纳,能够有效地将数学建模的基本思想进行反映。因此,在对这部分内容进行教学时,要增加例题,加大学生的练习,开拓学生的思维,让学生熟练掌握最值问题的解决办法。
(2)微分方程
在微分方程的教学中运用数学建模思想,能够有效地解决实际问题。微分方程所构建的数学模型不具有通用的规则。首先,要确定方程中的变量,对变量和变化率、微元之间的关系进行分析,然后运用相关的物理理论、化学理论或者工程学理论对其进行实验,运用所得出的定理、规律来构建微分方程;其次,对其进行求解和验证结果。微分方程的概念主要从实际引入,坚持由浅入深的原则,来对现实问题进行解决。例如,在对学生讲解外有引力定律时,让学生对万有引力的提出、猜想进行探究,了解到在其发展的整个过程中,数学发挥着十分重要的作用。
(3)定积分
微元法思想用途比较广泛,其主要以定积分概念为基础,在数学中渗入定积分概念,让学生对定积分概念的意义进行分析和了解,这样有利于在对实际问题进行解决时,树立“欲积先分”意识,意识到运用定积分是解决微元实际问题的重要方法。教师在布置作业题时,要增加该问题的实例。
三、结语
总之,在高等数学中对学生的数学建模能力进行培养,让学生在解题的过程中运用数学建模思想和数学建模方法,能够有效地激发学生的学习兴趣,提高学生的分析、解决问题的能力以及提高学生数学知识的运用能力。
将本文的Word文档下载到电脑
推荐度: