2023-07-05
2023-07-05
2023-06-18
2023-06-29
2023-03-19
更新时间:2024-02-24 14:06:24 发布时间:24小时内 作者:文/会员上传 下载docx
2023-07-05
2023-07-05
2023-06-18
2023-06-29
2023-03-19
摘要 :随着医学影像技术技术与设备的发展,它在医学领域中的地位日趋重要,医学影像技术的发展,在某种意义上代表着医学发展潮流中的一个热点趋势,推动了医学的发展,尤其是介入放射学的出现,使放射从单纯的诊断演变为既有诊断又有治疗的双重职能,并在整个医学领域中占有举足轻重的地位,成为与内外妇儿并列的临床学科。展望21世纪,医学影像学必将得到更快、更好及更全面的发展,必将会对人类的健康做出更大的贡献。本文通过对近些年所取得的成就讨论医学技术与设备的发展。
关键词:医学影像技术,发展
计算机X线摄影
X射线是发展最早的图像装置。它在医学上的应用使医生能观察到人体内部结构,这为医生进行疾病诊断提供了重要的信息。在1895年后的几十年中,X射线摄影技术有不少的发展,包括使用影像增强管、增感屏、旋转阳极X射线管及断层摄影等。但是,由于这种常规X射线成像技术是将三维人体结构显示在二维平面上,加之其对软组织的诊断能力差,使整个成像系统的性能受到限制。从50年代开始,医学成像技术进入一个革命性的发展时期,新的成像系统相继出现。70年代早期,由于计算机断层技术的出现使飞速发展的医学成像技术达到了一个高峰。到整个80年代,除了X射线以外,超声、磁共振、单光子、正电子等的断层成像技术和系统大量出现。这些方法各有所长,互相补充,能为医生做出确切诊断,提供愈来愈详细和精确的信息。在医院全部图像中X射线图像占80%,是目前医院图像的主要来源。在本世纪50年代以前,X射线机的结构简单,图像分辨率也较低。在50年代以后,分辨率与清晰度得到了改善,而病人受照射剂量却减小了。时至今日,各种专用X射线机不断出现,X光电视设备正在逐步代替常规的X射线透视设备,它既减轻了医务人员的劳动强度,降低了病人的X线剂量;又为数字图像处理技术的应用创造了条件。随着计算机的发展数字成像技术越来越广泛地代替传统的屏片摄影现阶段,用于数字摄影的探测系统有以下几种:
(1)存储荧光体增感屏[计算机X射线摄影系统(computer )]。
(2)硒鼓探测器。
(3)以电荷耦合技术(charge Coupled )为基础的探测器。
(4)平板探测器(Flat panel Detector)
a:直接转换(非晶体硒)
X-CT的发展
CT的问世被公认为伦琴发现X射线以来的重大突破,因为他标志了医学影像设备与计算机相结合的里程碑。其主要特点是横切面、断层成像、数字影像,使X线的重叠影像成为层面图像,并可用CT值测量人体组织密度。多年来,CT成像技术的发展一直围绕解决扫描速度、清晰度及扫描范围的和谐发展,最终多层(排)螺旋CT机的出现使三者得到了完美的体现。其优点是:
(1)扫描速度提高了2~6倍,检查效率提高了10%。
(2)清晰度大大提高。
(3)比单层螺旋CT扫描信息量提高了2~4倍,尤其利于观察微小病灶。
(4)节省了X线管的损耗,增强扫描可节省造影剂用量,和单层螺旋扫描比X线剂量减少。
正是由于使用了多层面采集和成像技术,有效地解决了扫描速度薄层和大范围的矛盾。今天,多层螺旋CT机已发展到64层(排),更有利三维立体影像成像、虚拟影像成像和CT血管成像,并且更多地被用于临床疾病的筛选,也会进一步发现微小的病灶,特别是临床症状不明显而被忽略的病灶,进而有利于治疗效果的`提高[。另外,超高速CT(VFCT)将用于临床,它用电子束代替X线,以极快的速度完成扫描,尤其适用于动态器官的扫描,使肺门部、心脏及大血管的影像质量进一步提高。未来的CT将是容积CT,随着探测器数量和材料的改进、计算机技术的提高、检出器的复数化排列,容积数据采集将会有更大的进步;数据量大,分辨率高,虚拟现实技术,这些新技术相加并用于临床,将会为CT的临床应用开辟更广阔的领域。
磁共振的发展
MRI自20世纪80年代用于临床,第一次使人体解剖三维成像,现有的低场、1T,中场将被高场3T MRI所取代。然而MR的发展,就扫描速度、清晰度及临床应用而言,主要的发展是在电子学梯度场、射频场等方面, 特别是脉冲序列和实时成像技术的发展。MR的进步集中反应在设备硬件发展基础上成像速度的提高及成像方式的改进和扩展,成像速度从以前的每层以分计算到目前的每层以秒计算,从而实现实时成像显示层面影像,甚至3D、4D等后处理影像及MR透视。正是有了实时成像技术和其开发的回波平面序列,除提高已有的性能外,MR功能性成像进一步得到了发展。灌注成像、弥散成像、血氧水平依赖性成像成为新的成像方式,前二者反应的已不是大体形态学信息,而是分子水平的动态信息,后者可以实施大脑皮质的功能定性,张力成像可测定组织的张力差别。随着新型磁共振机的开发,揭开了磁共振应用领域新的一页,即运动MR和介入MR的应用和研究。MR血管成像、MR水成像、MR血流成像、脏器功能的检测、MR波谱分析、动脉血质子标记技术、抗血管生成因子辅助MR功能成像等技术的应用,使磁共振成像进一步突破了影像学仅应用于显示大体解剖和大体病理学改变的技术范围,向显示细胞学的、分子水平的以至基因水平的成像方面发展,未来虚拟现实技术将用于MR成像,为MRI提供便捷、简易和无创伤的影像诊断。
图像存储和传输系统(PACS)
人体成像包括对健康人的成像和对病人的成像,对于前者的成像主要用于科研和教学,后者主要用于医学临床诊断和治疗。医学影像物理和技术是医学物理学的重要分支,研究的对象包括了所有人体成像。
目前临床广泛使用的模态按照成像时使用的物质波不同,分为X射线成像、γ射线成像、磁共振成像和超声成像。
一、对目前各种医学成像模态现状的分析
(1)X射线成像。X射线成像模态分为平面X射线成像和断层成像。人体不同器官和组织对X射线的吸收可以用组织密度进行表征,因此,可以利用平面x射线、x射线照相术对人体内脏器官和骨骼的损伤和病灶进行诊断和定位,同时也把胶片带进了医学领域。随着x射线显像增强技术的发展,x射线的血管造影术和其他脏器的专用x线机相继诞生,扩大了x射线成像的应用范围。平面x射线成像的未来发展方向是数字化的x光机技术其中,x线机是全世界的发展方向,但是其价格使得大多数用户望而怯步。
作为传统影像技术中最为成熟的成像模式之一的x射线断层成像,其速度对于心脏动态成像完全没有问题,加上显像增强剂,还可以对用于血管病变及其血脑屏障是否被病灶破坏进行检查,属于功能成像的范畴。当前,三维控件x射线断层成像的实验室样机已经问世,将会为x射线成像带来新的生命力。
(2)核磁共振成像。目前,各种各样的核磁共振设备产品已经大量进入市场。核磁共振成像集中体现了各种高新技术在医学成像设备中的应用。目前核磁共振主要应用包括人脑认知功能成像,用于揭示大脑工具机制的认知心理实验测量。
(3)核医学成像。核医学成像包括平面和断层成像两种方式。目前,以单光子计算机断层成像和正电子断层成像为主,为动物正电子断层成像主要是用于基础研究,而平面的γ相机已经处于被淘汰的水平。
核医学成像设备可以定量地检测到由于基因突变而引起的大分子运动紊乱继而引起的脏器功能变化,例如代谢紊乱、血流变化等。这是其他设备如超声波检查不可能完成的任务。这就是临床医学上所说的早期诊断,核医学影像设备能够快速发展归功于此。但是核医学成像存在空间分辨率差、病理和周围组织的相互关系很难准确定位的确定,因此,还需要医学物理工作的不懈努力。
(4)超声波成像。超声波是非电离辐射的成像模态,以二维成像的功能为主,也包括平面和断层成像两类产品。超声波成像由于其安全可靠、价格低廉,多以在诊断、介入治疗和预后影像检测中得到发展。目前,超声波设备已有超过x射线成像的势头。同样,超声波成像也存在一定的缺点,如图像对比度差、信噪比不好、图像的重复性依赖于操作人员等。
二、关于医学软件问题
(1)基本情況分析。成像的硬件设备要完成功能离不开医学软件的支持,对于这些医学软件按照和硬件设备的关系,可分为三个层次:
第一层,工作和硬件紧密结合的软件。主要功能是负责成像设备的运动控制,对数据的采集,图像预处理和重建,完成数据分析。
第二层,主要负责对医疗器械产生的数据进行分析、处理软件。这种软件的应用需要来自医学物理人员,软件编程人员和医生三方的合作,目前,由于我国还没有建立这种三方合作机制,这类软件应用情况明显滞后。
第三层,主要功能是完成医学信息的整合的软件,用于医疗过程中医疗信息,医学工作的管理。例如PACS。这种软件也需要医生的参与,但是并没有依赖性。
【关键词】 断层解剖;影像学;教学
作为医学影像诊断的基础形态学科,断层影像解剖学越来越受到的重视,如何开展和完善断层影像解剖学课程的教学,是我们面临的一个崭新课题。我校于20_年下半年首次在医学影像系影像专业本科生中开出断层解剖学课程,20_年又将断层解剖学列为临床医学本科生的选修课,教研室正式建立断层解剖陈列室和专业教室。通过近几年的教学实践,本文结合我校断层解剖学教学的开展情况,谈谈我们在断层影像解剖学课程教学中的体会。
1、教学内容及学时的安排
影像专业本学生的断层解剖学授课时数开始为40学时,后逐渐增加到60学时,非影像系本科生选修课为20学时,理论课与实验课之比均为2∶1。由于非影像专业的选修课时数较少,授课重点突出头、颈、胸、腹、盆部的连续横断层解剖,要求学生重点了解和掌握颅内结构、纵隔、肺、肝、子宫、前列腺等重要结构在横断面上的表现。医学影像专业本科生则增加头颈部的矢、冠状断层解剖,以及颌面、纵隔、腹部、盆部的有关间隙内容。在教学中我们觉得影像专业本科生的40学时明显偏少,逐渐增加到60学时比较合适。非影像系本科生选修课20学时仍然偏少,建议今后可增加到30学时比较妥当。对于临床医学本科学生最好能够开设断层影像解剖学必修课程。
2、教学手段及方法的完善
传统断层解剖教学中,以幻灯机逐一放断层切面为主,向学生展示的断层切面图片缺乏立体感和整体感。为此,我们利用中国数字化可视人体数据,采集头、颈、胸、腹、男女性盆腔横断层标本图像以及上述部位相对应的ct、mri图像,制作幻灯片,并制作动静结合的多媒体课件。把抽象的结构变为较为直观的形态,将各个重要器官建立三维动态数字模型,包括体素重建模型和面绘制重建模型,可以任意方向切割显示,可从整体观看到切面部位,可以同时或分步展示一个断层平面的多个结构,可以获取各部位任意切面的断面图像,可以连续显示和动态播放,从而更准确描述形态与结构及毗邻的关系。在断层解剖教学中还应注意围绕重要器官标志,以重要标志性结构出现的规律为主旋律实施讲授,比如:大脑中央沟在断层中出现是否具有规律性?不同层面小脑幕出现有什么特征?经mri片和实物标本验正,便于学生理解掌握。关于教学标本,目前我们用的标本包括头颈部横、矢、冠连续断层标本,胸、腹、盆连续横断层标本。同时,针对局部断层解剖实验课准备该部分的局部解剖标本,使学员利用局解标本增加对肺内、肝内等复杂结构的再认识。但由于标本比较紧缺,目前我们用的断层标本都是经过封装的,学员还不能进行实体解剖,今后我们将逐步完善。
3、学员主观能动性的发挥
【参考文献】
[1] 刘树伟,李振平,丁 娟,等。创建断层解剖学课程的体会[j]。四川解剖学杂志,20_,10(1).
【摘要】乌鲁木齐军医学院在六年多的医学影像专业教学改革实践中,通过强化实践性教学目标,优化教学课程配置,重组学科体系,改进教学方法与内容,构建课程量化考核体系,开展教学评估,取得了良好的效果。
关键词:医学影像技术教学改革
我院作为首批招收医学影像技术专业的学校,自1999年开办医学影像技术专业大专班。根据全军院校教学改革工作会议精神。从教学实际出发,经过六年多来的教学改革探索和实践,取得了初步成效,供同仁参考和指正。
一、确立教学目标。强化实践性教学
(一)把握规律,强调实践性教学目标
强化实践性操作,全面改革讲习比例不合理的现状,打破理论与实践教学分段实施的界限。充分体现该专业以培养高等技术应用型医学影像专业人才为根本任务,适应基层军地卫生工作需要为目标,突出“应用”为特征,围绕动手能力强化实践性操作。以现代化教育技术为手段,彰显影像学科形象化的特点,提高教学时效比。将影像诊断学全部进入实验室授课。电子幻灯授课与学生同步阅读实片过程结合,实现理论与实践的零距离接触的事例教学的目的;将X线摄影中基本理论、X线照片冲洗化学集中讲授,X线摄影位置学部分全部进入实验室在教师实体示范操作的基础上,主要由学生分组进行操作训练,达到集中学习基本理论、分组强化规范具体操作的目的。在实习环节中,实施“导师制”,倡导学生主动实践与带教主动指导相结合并全程分段进行考核,确保实践教学的质量。
(二)抓住核心,优化课程体系与教学内容
以培养专业技能和综合素质为核心, 适应目前随医学影像学的快速发展,影像学科架构的变化,对原有教学内容以突出影像诊断、注重实践教学、加强技能训练、适应基层发展需要为原则。基础课以必须、够用为度,专业基础课以专业需要为主。专业课以宽基础重实用为本。基础课:取消高等数学、物理学改为医学影像物理学,增设一门人文学科;专业基础课:将电工学、电子学合为医学电子学基础,将原有医学微生物学与人体寄生虫学合并为医学病原学,减少生物化学、药理学、医学病原学学时数,将人体解剖学、组织学与胚胎学合并为人体解剖组织胚胎学,增设人体断层解剖学;专业课:将原来的x线投照学和x线机原理构造与维修分别增加CT、MPd、CR和DR相关内容,重组为医学影像设备学和医学影像检查技术学,将原有的x线诊断学、CT诊断学、MR/诊断学融合为医学影像诊断学。同时采取大专业平台与小方向模块课程自主选择的方式将原有的部分课程列入选修课,如介入放射学、影像核医学、放射治疗学等
(三)拓视野,增强针对性教学
1、强化第二课堂的专业知识拓展和提高专业素养和发展潜于的功能,弱化围绕专业教学以外的作用。首先设立讲座课,如医学统计学、医学科研基础、医学文献检索、医学论文撰写、医学信息管理、专业英语等。其次通过开放实验室,学生自行设计内容进行强化。对学有余力的学生,设立课题小组,老师围绕设计课题进行引导,通过查阅资料、实际操作,拓展专业知识面。
2、以外引内联方式,加强师资建设。聘请院外有实践经验的专家为兼职教授,定期来院讲课或指导工作,丰富临床实践知识;根据专业教学需要,有针对性安排教师进行专项进修、交流,根据教学实际,与医院联合进行教学、学术研究,共同促进、共同发展。
二、构建学生专业综合评价的考评体制
(一)实行理论与技能测评分离
根据专业培养目标的要求,改革原有一纸定乾坤的模式,采取专业理论与专业技能分离,对于专业理论与专业技能测评,其中任何一项不合格,均认定为专业不合格,通过考核方式改变,强化专业技能要求。其中理论考核由题库生成,技能考核分口试、操作二部分,请院外专家进行测评。
(二)建立技能目标考核标准
1、医学影像诊断学分为平时考核、课终考核、毕业考核。平时考核以各系统完成阅片诊断数量及诊断报告质量打分。课终、毕业进行双盲片考核,抽取各系统一张影像片,书写诊断报告。对报告结果分格式、描述内容、名词应用、诊断顺序、诊断结论等五部分,进行计分。
2、x线摄影学以具体操作内容双盲抽取。分暗室装片、机器准备、体位摆放、工具应用、条件设备、暗室洗片等六部分目标进行考评。
3、医学影像设备学以随机抽题。分原理说明、部件指定、线路分析、仪器使用等四部分测评。
(三)完善实习考核办法
在实习手册中增加实习目标考核标准,完善实习双向(学与教)督促机制。 按专业课分医学影像诊断、医学影像检《现代医用影像学》20_年12月第15卷第6期查技术学二大部分,然后再各自分为普放、CT、Mill三个小部分,分别设立考核内容及量化标准。对考核过程要求每一小部分由带教医生(技师)考核鉴字、每一大部分由科室会考、学校抽考的方式进行,实习结束前由学校与医院科室共同检查考核。
三、加强教学方法及手段的变革,开展教学质量评估
随着医院影像设备的发展与增多,影像学检查在医院诊疗工作中的应用也越来越普遍。传统的影像存贮介质如胶片、磁带、光盘等随着影像数据量的激增,给存放和查找带来了严重问题,如何更好地存储并保证这些数据的安全,则需要采用先进的数字化影像管理方法来加以解决。
1、系统建设原则:
1)稳定可靠原则
2)先进性原则
在采用主流成熟技术的同时,需要考虑系统架构的先进性,建立一个灵活高效、功能丰富、持续发展的数据中心基础架构。可以在保证业务连续性的前提下,自由增加磁盘阵列、服务器、带库等设备保证整个系统存储空间和处理能力不断提升,系统应该能支持影像数据有损和无损压缩。
3)高效性原则
系统应当可以实现高速查询和调阅图像,能够在尽可能短的时间内完成在线调阅。
4)易于管理
系统是否易于维护,操作是否直观、简单、维护成本如何,掌握的难易程度如何,是否存在对有限资源(如关键人员,设备等)的依赖?能否对分布环境的异构系统统一管理,是否具备完整的日志管理,每一步操作能否全程追踪。
2、如何有效的利用和保管影像数据
信息互通
医学影像系统作为医院信息系统的一部分,应采取模块化设计、尽量采用通用的信息交换标准如DICOM,能够与其他系统相互沟通信息,医生在查看检查图像的同时 ,能够了解检查报告、病人的病历等其他信息,形成一个医院的信息整体。
图像预处理技术
将本文的Word文档下载到电脑
推荐度: