2023-07-05
2023-06-18
2023-07-05
2023-06-29
2023-03-19
更新时间:2024-04-27 09:26:44 发布时间:24小时内 作者:文/会员上传 下载docx
2023-07-05
2023-06-18
2023-07-05
2023-06-29
2023-03-19
选择填空题
1.易错点归纳
九大模块易混淆难记忆考点分析,如概率和频率概念混淆、数列求和公式记忆错误等,强化基础知识点记忆,避开因为知识点失误造成的客观性解题错误。
针对审题、解题思路不严谨如集合题型未考虑空集情况、函数问题未考虑定义域等主观性因素造成的失误进行专项训练。
2.答题方法
选择题十大速解方法:排除法、增加条件法、以小见大法、极限法、关键点法、对称法、小结论法、归纳法、感觉法、分析选项法。
填空题四大速解方法:直接法、特殊化法、数形结合法、等价转化法。
解答题
专题一、三角变换与三角函数的性质问题
1.解题路线图
①不同角化同角
②降幂扩角
③化f(x)=Asin(ωx+φ)+h
④结合性质求解。
2.构建答题模板
①化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数”的形式。
②整体代换:将ωx+φ看作一个整体,利用y=sinx,y=cosx的性质确定条件。
③求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h的性质,写出结果。
④反思:反思回顾,查看关键点,易错点,对结果进行估算,检查规范性。
专题二、解三角形问题
1.解题路线图
①化简变形;②用余弦定理转化为边的关系;③变形证明。
①用余弦定理表示角;②用基本不等式求范围;③确定角的取值范围。
2.构建答题模板
①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。
②定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。
③求结果。
④再反思:在实施边角互化的时候应注意转化的方向,一般有两种思路:一是全部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形。
专题三、数列的通项、求和问题
1.解题路线图
①先求某一项,或者找到数列的关系式。
②求通项公式。
③求数列和通式。
2.构建答题模板
①找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。
②求通项:根据数列递推公式转化为等差或等比数列求通项公式,或利用累加法或累乘法求通项公式。
③定方法:根据数列表达式的结构特征确定求和方法(如公式法、裂项相消法、错位相减法、分组法等)。
④写步骤:规范写出求和步骤。
⑤再反思:反思回顾,查看关键点、易错点及解题规范。
专题四、利用空间向量求角问题
1.解题路线图
①建立坐标系,并用坐标来表示向量。
②空间向量的坐标运算。
③用向量工具求空间的角和距离。
2.构建答题模板
①找垂直:找出(或作出)具有公共交点的三条两两垂直的直线。
②写坐标:建立空间直角坐标系,写出特征点坐标。
③求向量:求直线的方向向量或平面的法向量。
④求夹角:计算向量的夹角。
⑤得结论:得到所求两个平面所成的角或直线和平面所成的角。
专题五、圆锥曲线中的范围问题
1.解题路线图
①设方程。
②解系数。
③得结论。
2.构建答题模板
①提关系:从题设条件中提取不等关系式。
②找函数:用一个变量表示目标变量,代入不等关系式。
③得范围:通过求解含目标变量的不等式,得所求参数的范围。
④再回顾:注意目标变量的范围所受题中其他因素的制约。
专题六、解析几何中的探索性问题
1.解题路线图
①一般先假设这种情况成立(点存在、直线存在、位置关系存在等)。
②将上面的假设代入已知条件求解。
③得出结论。
2.构建答题模板
①先假定:假设结论成立。
②再推理:以假设结论成立为条件,进行推理求解。
③下结论:若推出合理结果,经验证成立则肯。 定假设;若推出矛盾则否定假设。
④再回顾:查看关键点,易错点(特殊情况、隐含条件等),审视解题规范性。
专题七、离散型随机变量的均值与方差
1.解题路线图
(1)①标记事件;②对事件分解;③计算概率。
(2)①确定ξ取值;②计算概率;③得分布列;④求数学期望。
2.构建答题模板
①定元:根据已知条件确定离散型随机变量的取值。
②定性:明确每个随机变量取值所对应的事件。
③定型:确定事件的概率模型和计算公式。
④计算:计算随机变量取每一个值的概率。
⑤列表:列出分布列。
⑥求解:根据均值、方差公式求解其值。
专题八、函数的单调性、极值、最值问题
1.解题路线图
(1)①先对函数求导;②计算出某一点的斜率;③得出切线方程。
(2)①先对函数求导;②谈论导数的正负性;③列表观察原函数值;④得到原函数的单调区间和极值。
2.构建答题模板
①求导数:求f(x)的导数f′(x)。(注意f(x)的定义域)。
②解方程:解f′(x)=0,得方程的根。
③列表格:利用f′(x)=0的根将f(x)定义域分成若干个小开区间,并列出表格。
④得结论:从表格观察f(x)的单调性、极值、最值等。
⑤再回顾:对需讨论根的大小问题要特殊注意,另外观察f(x)的间断点及步。
高考没有足够的时间让你反复验算,更不容你一再地变换解题方法,往往是拿到一个题目,凭感觉选定一种方法就动手做,这时除了你的每一步运算务求正确外,还要求把你当时的解法坚持到底,也许你选择的不是最好的方法,但如回头重来将会花费更多的时间,当然坚持到底并不意味着钻牛角尖,一旦发现自己走进死胡同,还是要立刻迷途知返。
高考的数学压轴题对于大多数同学来说都是老大难,在高...
高考中的选择题一般是容易题或中档题,个别题属于较难...
刚拿到试卷,一般心情比较紧张,此时不易匆忙作答,应...
20_年高考复习要想有成效,必须坚持靠自己学的原...
通常我们答卷的时候,老师都会告诉我们先易后难,我们...
在高考数学科目的复习中,数学能力的培养是关键,思维...
学生在日常复习中,一定要注意总结归纳,总是结论习得...
高考数学解选择、填空题的基本原则是“小题不可大做”...
在高考数学科目考试的时候,解答题成绩的评定不仅看最...
在高考数学考试的时候,要注重解题的快法和巧法,争取...
对于数学卷子来说,每个题型的分值都不低,都是不能轻...
高考数学答题的时候,要注意仔细,解答题的考点相对较...
高考数学大题题型包括:三角函数或数列、立体几何、统...
高考数学评卷的主观性很少,评分细则都是细分到每一分...
将所要研究的问题向极端状态进行分析,使因果关系变得...
一、明确复习思路,充分发挥集体力量
1、重视对《新课标》的研究,并结合对近年高考题的认真分析,深化对高考题的认识
高中数学总复习是策略性高,针对性强的一项工作。研究《考试说明》及高考试题中对考试的性质、考试的要求、考试的内容、考试形式及试卷结构各方面的要求,并以此为复习备考的依据,也作为复习的指南,做到复习不超纲,具体说来是:
(1)以新课标各省的高考真题进行重点剖析,从中分析出常见的重点考点及各考点间的横纵向联系,从而为整个一年的复习定下一个正确的基调。
(2)仔细剖析对能力的要求和考查的数学思想与教学方法有哪些?有什么要求?明确一般的数学方法,普遍的数学思想及一般的逻辑方法(即通性通法)。
(3)采取策略:注重对数学概念本质的复习;立足中低档,降低重心是策略;过程中发展能力,提高素质是核心。
2、重视课本,狠抓基础,建构学生的良好知识结构和认知结构
3、重视对新增内容的复习研究:
新增内容多而散,考查的切入点不集中,难度虽不算大,但如果对于这部分内容的复习没有足够的重视就会失去垂手可得的分数。
4、精选题、练有法、引得当、讲到位
夯实“三基”与能力培养都离不开解题训练,因而在复习的全过程中,我们力争做到选题恰当、训练科学、引伸创新、讲解到位。
(1)精选题,练有法我们在选题的典型性、目的性、针对性、灵活性等原则指导下,突出重点,锤练“三基”。力争从不同的角度、不同的方位、不同的层次选编习题。训练的层次由浅入深,题型由客观到主观,由封闭到开放,始终紧扣基础知识,在动态中训练了“三基”,真正使学生做到“解一题,会一类”。要做到选题精、练得法,在师生共做的情况下,多进行解题的回顾、总结,概括是提炼基本思想、基本方法,形成一些有益的“思维块”。要做到选题精、练得法,还应注意针对学生弱点以及易迷惑、易出错的问题,多加训练,在解题实践中,弥补不足,在辨析中,逐步解决“会而不对,对而不全”的老大难问题。
(2)引得当
贴近、源于课本是近年来高考题的又一特点,这就要求我们深入挖掘教材,如变换课本中例习题的背景、改变图形位置、增减题设或结论等,达到深化“三基”、培养能力的目的。要引得当,我们还要注意充分发挥典型题的作用,同时深化推广或变式变形以及引伸创新。
(3)讲到位
要讲到位,复习中我们重视过程,重视知识形成的过程,融会贯通前后知识的联系,切忌孤立对待知识、思想和方法。要讲到位,还要重视思维过程的指导,揭示如何想?怎样做?谈“来龙去脉”,在谈思维的过程中,还应重视通性通法。
5、基本复习方法
①对立意新颖、结构精巧的新题予以足够的重视,要保证有相当数量的这类题目,但也不一味排斥一些典型的所谓“新题”、“热题”。传统的好题,包括课本上的一些例、习题应成为我们的保留节目。陈题新解、熟题重温可使学生获得新的感受和乐趣。
②控制题目的难度,在“稳”、“实”上狠下功夫,那些只有运用“特技”才能解决的“偏、怪、奇”的题,坚决摒弃。
③讲究讲评试卷的方法和技巧。
①.照顾一般,突出重点
②.贵在方法,重在思维
③.分类化归,集中讲评
6、认真落实集体备课工作
①按照制定各轮复习的时间安排,保证各轮次按时完成。特别是第一、二轮的时间。
②每周备课要按照计划对下一周的内容统一进度、统一主要例题,并提前删减资料上不必要的内容。
③每周三下午4:10——5:00为集体备课时间。备课组要结合上一周的学情和下一周的内容适时配置周周练,进行巩固训练,弥补教学上的漏洞,及时测评,及时反馈,调整教学,可以对学生中出现的问题共同想办法解决。
④各班数学教师要根据实际情况适当调整复习进度,不能拖时间。安排好三轮复习,确立每一轮达到目的。三轮之间的衔接。每位教师心中有数,力争形成完整的知识体系,避免前松后紧,避免任务交错,违背于教学规律。
7、个人备课
认真落实集体备课精神,有创造性的写出个人教案。狠抓课堂教学,注重课堂教学效果和落实。踏踏实实做好教学工作。具体要求:
①做到没有教案不登讲台。
②年轻教师保证听一节讲一节。
③注意课堂教学秩序的管理,保证课堂效果。
④加强作业检查力度,保证内容落实。
8、边缘生和尖子生辅导工作
(1)普通班根据高二成绩确定边缘生名单及数学弱科科目,并建立边缘生成绩跟踪表。
(2)日常辅导:任课教师在课堂、自习、课余、作业、单元验收和摸底考试试卷等方面对这些学生加
以个别关注和指导。
(3)利用课外活动时间集中辅导,统一辅导形式和内容,针对学生存在的问题统一编印训练题,当堂批阅讲评。(具体辅导安排随年级组统一进行)
9、教学生会三思:一思:我错在哪里;二思:我为什么会做错;三思:怎么才能不出错。
二、时间安排:略
一、时间主要项目和内容
~复习“概率与统计”知识及章节检测
~复习“解析几何”知识及章节检测
~复习“算法”知识及章节检测
~进行第二轮专题复习及月考
~进行第三轮系统复习及大型模拟考
~辅导学生查缺补漏,进一步熟悉知识与系统知识(以上安排视实际情况而定)
二、教学方法与策略:
1.重视对20xx年高考数学考试大纲的学习。按《考试大纲》的要求来复习,不走弯路,有针对性地复习,提高复习效率。
2.注重基础。在复习中一定要巩固和掌握基础知识,基本技能,基本思想和方法。命题思想是以基础知识、基本技能为载体,全面考察学生分析问题和解决问题的能力。因此复习时,对数学概念、公理、定理、法则、性质、公式的研究一定要透彻,不仅要知其然,更能知其所以然。如对概念的定义可以从以下方面探究:
(1)定义的限制条件是什么?
(2)能否用数学符号语言来表述?
(3)怎样对其进行否定?
(4)有没有等价命题?
(5)在解题过程中经常怎样使用?做题时要善于总结规律,学会运用数学思想和方法研究问题。如求参数范围,代数方法常采用分离参数化归为求函数的值域或最值,若采用几何法就要明确参数的几何意义,利用数形结合的方法来解决。
3.严抓训练。精选习题,对学生进行系统、强化训练,培养应试能力。考试是一门学问,高考要想取得好成绩,不仅取决于扎实的基础知识、熟练的基本技能和过硬的解题能力,而且取决于临场的发挥。我们要把平常的考试看成是积累考试经验的重要途径,把平时考试当做高考,从心理调节、时间分配、节奏的掌握以及整个考试的运筹诸方面不断调试,逐步适应。
4.严抓落实检查。作业布置了,一定要检查,落实。
5.严抓规范答题。不怕难题不得分,就怕每题都被扣分。每周至少做一套模拟题,以高考心态限时完成。对照标准答案找问题,尽量做到:
(1)小错误不犯,如列解析式别忘定义域,异面直线所成的角不要写成钝角;
(2)书写字迹清楚,格式规范,有条有理;
(3)对做错的题及不会做的题要查找原因,及时采取补救措施,以防后患。
6.重反思、总结。要抓好审题的反思、思维定势的反思、解题后的反思,充分挖掘每道习题的价值,变盲目性为自觉性。每次考完后,学生自己都应认真总结,教师也要尽可能讲评到位。教师讲评最好能包括四个方面的内容:
(1)本题考查了哪些知识点?
(2)怎样审题?怎样打开解题思路?
(3)本题主要运用了哪些方法和技巧?关键步骤在哪里?
(4)学生答题中有哪些典型错误?哪些属于知识上、逻辑上、心理上还是策略上的原因?
(5)一题多解和多题一解。
7.加强运算能力的培养。平时教学要切实要求考生动手解题,训练运算准确率,立足于一次成功。
8.要求学生做到“五心”“六到”:
1、开始学习有决心;
2、碰到困难有信心;
3、研究问题有专心;
4、反复学习有耐心;
5、向别人学习要虚心。“六到”:心到:开动脑筋,积极思维;眼到:勤看,多方面增加感性知识;口到:勤问、熟记一些必需知识;耳到:要勤听,发挥听觉容量的最大潜力;手到:要勤写,抄写、记录是读书关键;足到:要勤跑,实地考察或请教别人。
9.突出新增内容的地位,提高观点,减轻学生的负担。新教材增加了算法、空间向量、“五图”(三视图、流程图、茎叶图、散点图、频率分布直方图)及“三选一”数学内容,对新增加的内容一定要学好、用好,不能把这些内容当作包袱背上.特别是对空间向量这部分内容,要充分认识到它的工具作用——“以算代证”,在不断应用它们解决问题的过程中,让学生真正体会到“提高观点,降低难度,减轻负担”的含义。
10.提倡教师导学,学生悟学,导悟结合。学的真谛在于“悟”,教的秘诀在于“导”,中间媒介是启发。教师要关注学生的发展,分析学生在数学学习中思维突然受阻或中断的原因.探讨学生怎样以及为什么会在认识发展的关键时刻突然萌发出新思路.以便指导学生从旧知识悟出新知识,认识知识的规律性,并且让学生用获得知识的能力和运用其知识的学习能力去分析解决实际问题。学生不能只掌握学习内容,还要检查、分析自己的学习过程,要学生对如何学、如何巩固,进行自我检查、自我校正、自我评价。使学生理解学习过程,从而使学生更聪明。
1、函数与方程思想
函数思想是指运用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系运用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程或不等式模型去解决问题。同学们在解高考数学题时可利用转化思想进行函数与方程间的相互转化。
2、数形结合思想
高考数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。它既是寻找问题解决切入点的“法宝”,又是优化解题途径的“良方”,因此建议同学们在解答高考数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。
3、特殊与一般的思想
用这种思想解高考数学选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,同学们可以直接确定选择题中的正确选项。不仅如此,用这种思想方法去探求高考数学主观题的求解策略,也同样有用。
4、极限思想解题步骤
极限思想解决问题的一般步骤为:
一、对于所求的未知量,先设法构思一个与它有关的变量;
二、确认这变量通过无限过程的结果就是所求的未知量;
三、构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果。
5、分类讨论思想
同学们在高考数学解题时常常会遇到这样一种情况,解到某一步之后,不能再以统一的方法、统一的式子继续进行下去,这是因为被研究的对象包含了多种情况,这就需要对各种情况加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。
引起分类讨论的原因很多,数学概念本身具有多种情形,数学运算法则、某些定理、公式的限制,图形位置的不确定性,变化等均可能引起分类讨论。建议同学们在分类高考数学讨论解题时,要做到标准统一,不重不漏。
高三地理学习与复习的内容多而杂,而且很多基础知识和基本技能又分散覆盖在初高中的教材中。往往是学了新的,忘了旧的。如何搞好高三地理的学习与复习,是学生们要面临的重要问题。
第一、是要狠抓基础、提高能力。所谓基础,指的是基础知识、基本能力、基本的思维过程和基本的地理素养,而这些基础的复习应以教材为载体。在紧密联系教材、巩固知识的同时,使能力得到逐步提高。
第三、是要形成两个习惯。一个是尽早训练,形成正确的答题习惯。另一个是形成关注热点、拓宽视野的习惯。
第四、抓住三种图表,提高识别地理特征的能力。图表是地理学的第二语言,其突出特点是将“空间概念”或“可量化”的地理事物用直观形象的形式表现出来。考试也经常以图表为载体考察地理知识,联系政治、历史。图表可分为三种:一是等值线图,如等高线、等温线、等压线(面)、等盐度线、等降水量、等震线、等潜水位线等;二是统计图表;三是区域地图。通过一轮复习,学生应能做到熟练解读各种比例尺的地图及地形剖面图,并能在图上识别主要地理事物的位置或分布区;熟练使用和说明各种等值线图、示意图、景观图像、各种自然要素和社会经济的统计资料和图表等;并能根据要求绘制简单的地理图表。
第五、要走出六个误区提高复习效率。同学们在复习的过程中,除了要随时注意适度调整自己的复习计划外,也要注意是否陷入了学习的误区:
1、对自己没有准确定位,好高骛远。
2、面面俱到,一味求全。
3、学习无计划,盲目跟从老师。
4、零敲碎打,死记硬背。
5、题海战术,追求数量。
6、审题粗心,解题方法僵化。
地理是文科中相对偏向理科的学科,要求学生既要有较强的文字分析整合能力,又要具备较强的数字处理能力。因此,不少学生在学习地理时感到十分困惑,甚至头疼。应该说好的方法是成功的基础,在复习的地理的过程中一定要找到适合自己的学习方法、要多与老师和同学沟通,勤于分析、多加思考。
高考数学解题思想一:函数与方程思想
函数思想是指运用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系(或构造函数)运用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程(方程组)或不等式模型(方程、不等式等)去解决问题。利用转化思想我们还可进行函数与方程间的相互转化。
高考数学解题思想二:数形结合思想
中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。它既是寻找问题解决切入点的“法宝”,又是优化解题途径的“良方”,因此我们在解答数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。
高考数学解题思想三:特殊与一般的思想
用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,我们可以直接确定选择题中的正确选项。不仅如此,用这种思想方法去探求主观题的求解策略,也同样精彩。
高考数学解题思想四:极限思想解题步骤
极限思想解决问题的一般步骤为:(1)对于所求的未知量,先设法构思一个与它有关的变量;(2)确认这变量通过无限过程的结果就是所求的未知量;(3)构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果。
高考数学解题思想五:分类讨论思想
我们常常会遇到这样一种情况,解到某一步之后,不能再以统一的方法、统一的式子继续进行下去,这是因为被研究的对象包含了多种情况,这就需要对各种情况加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。引起分类讨论的原因很多,数学概念本身具有多种情形,数学运算法则、某些定理、公式的限制,图形位置的不确定性,变化等均可能引起分类讨论。在分类讨论解题时,要做到标准统一,不重不漏。
在浏览完试卷后,对答题顺序基本上做到心中有数,然后尽快做出答题顺序,排序要注意以下几点:
1.根据自己对考试内容所掌握的程度和试题分值来确定答题顺序。
2.根据自己认为的难易程度,按先易后难先小后大先熟后生的原则排序。
审题要慢,做题要快,下手要准
题目本身就是破解这道题的信息源,所以审题一定要逐字逐句看清楚,只有细致地审题才能从题目本身获得尽可能多的信息。找到解题方法后,书写要简明扼要,快速规范,不拖泥带水,牢记高考评分标准是按步给分,关键步骤不能丢,但允许合理省略非关键步骤。答题时,尽量使用数学语言、符号,这比文字叙述要节省而严谨。
最后,会做的题目要特别注意表达的准确、考虑的周密、书写的规范、语言的科学,防止被分段扣点分。
将本文的Word文档下载到电脑
推荐度: