2023-07-05
2023-06-18
2023-07-05
2023-06-29
2023-03-19
更新时间:2024-04-15 14:29:40 发布时间:24小时内 作者:文/会员上传 下载docx
2023-07-05
2023-06-18
2023-07-05
2023-06-29
2023-03-19
教学内容:
小数点移动引起小数大小变化的规律
教学目的:
1、通过创设生动的情境??“小数点搬家”这一童话故事,使学生探索出小数点向左、右移动引起小数大小变化的规律。
2、能运用这一规律计算相关的小数乘除法。
3、激发学生学习数学的兴趣,培养合作意识和应用意识。
教学重点:
探索、概括出小数点的移动引起小数大小的变化规律。
教学难点:
能够应用这一规律计算小数乘除法。
教学准备:
教学课件“小数点搬家” 、数字卡片。
教学过程:
一、激趣导入:
同学们,老师这里有三张卡片(出示三张写有100的卡片),你能在适当位置添上小数点,使这个数最大吗?(100.)最小呢?()还可以是多少?()小数点位置不一样,它们的.大小也就不一样了。是呀,小数点真重要,今天我们就来探讨有关小数点方面的知识(板书:小数点搬家)看了这个课题,你想知道什么?(生答)带着这些问题,让我们走进山羊快餐厅。
二、童话激趣,发现变化。
1、出示三张情境图:同学们,请看屏幕,从图中你看到了什么?学生讲述,老师随机板书:元、元、元。
2、提问 (1)这些小数的实际价格是多少?生说,师板书。(2)请同学们认真观察、、小数点的位置有什么变化?它们的大小又有什么变化?请你们在小组里讨论一下吧。
3、小组汇报:
汇报交流,师适时板书:
小数点 大小变化
向左移动一位 缩小10倍(缩小到原来的 )
向左移动二位 缩小100倍(缩小到原来的 )
向左移动三位 缩小1000倍(缩小到原来的 )
4、来了这么多客人,山羊真开心呀,可月底一算,亏本了,热心的小数点知道自己闯祸了,赶紧往右搬家,请想一想:小数点向右移动小数的大小有什么变化?小组讨论后完成课本40页“试一试”。
小组合作讨论之后,全班交流。
从而得出:小数点向右移动引起小数大小的变化规律:
一、课题名:
用计算器探索规律
二、教学目标:
知识与技能:会用计算器计算比较复杂的小数乘、除法,并有利用计算器进行计算的意识。
过程与方法:在利用计算器进行计算时,学生能通过观察、分析发现算式中的规律,并能按规律直接填得数。
情感、态度与价值观:在引导发现规律、描述规律的过程中,培养学生的逻辑推理能力,让学生体会数学中的美以及探究的乐趣。
三、教学的重点和难点:
1、本课的教学重点:能用计算器探索计算规律,并能应用探索出的规律进行一些小数乘、除法的计算。
2、本课的教学难点:发现规律。
四、教学方法:
主要采取的教学方法:计算、猜测、验证、总结归纳,体验探索。
五、教学过程:
(一)导入新课
复习导入
1、出示:比一比谁算得快。
32、47÷15=63、79÷5、2=
学生自主计算并订正结果。
2、教师引入:在计算这些题目时,同学们是不是感到很麻烦?这时我们可以使用计算器。用计算器还可以帮助我们探索一些规律呢?
(板书课题:用计算器探索规律)
(二)讲授新课
1、出示教材第35页例9例题。
让学生用计算器计算下列各题。
订正答案:
1÷11=0、0909…2÷11=0、1818…
3÷11=0、2727…4÷11=0、3636…
5÷11=0、4545…
师小结:这些都是循环小数。并引导学生观察、比较,你发现了哪些规律?在小组内交流讨论。
引导学生说出规律:商是循环小数;循环节都是9的倍数。
2、引导学生按规律写结果:同学们,通过用计算器计算,观察计算结果,我们发现了规律。现在大家能不能不计算,用发现的规律直接写出下面几题的商呢?(出示以下例题)
6÷11=7÷11=8÷11=9÷1l=
学生汇报得出的结果。引导学生说一说,你是根据什么来写这些商的?
(根据1÷11,2÷11……5÷11的结果得出的规律来写商的。)
3、检验:同学们写出的规律对不对?用计算器来检验一下。
学生自主验证计算结果,与自己得出的结果作比较。
(三)巩固练习
1、完成教材第35页“做一做”。
先让学生用计算器计算前四个题,然后组织学生讨论有什么规律。
规律:第一个因数的整数部分与第二个因数的小数部分不变,第一个因数的小数部分与第二个因数的整数部分有变化而且数位相同。因数有几位数,积的整数部分就有几个2,小数部分就有几个;
1,再根据规律试着写出后两题的积。
2、完成教材第37页“练习八”第12题。
利用计算器计算出结果,并讨论:你发现了什么规律?
规律:第一个因数不变,第二个因数是9的几倍,积的整数部分就有5个几,小数部分万分位是O,其余的数都是9的那个倍数。
3、完成教材第38页“练习八”第13题。
先让学生说一说有什么规律,再根据规律直接写出得数,最后用计算器验算。
(四)小结
师:这节课学了什么知识?有什么收获?
引导学生总结:
1、用计算器计算省时省力又很精确。
2、观察得到规律,不用计算器也能很快得出结果。
(五)作业布置
一、先用计算器计算前面3题,仔细观察,再试着写出后面的得数。(保留6位小数)
1÷7=2÷7=
3÷7=4÷7=
5÷7=6÷7=
二、根据规律不计算直接写得数。
5×5=25
15×15=225
25×25=625
35×35=
45×45=
55×55=
六、板书设计
一、教材分析
义务教育课程标准实验教科书数学(人教版)一年级上册中实践活动——“数学乐园”是根据学生的年龄特点,联系学生的生活实际设计的一种数学实践活动情境,其内容都是一些具有现实性和趣味性的'活动材料和“起立游戏”、“送信游戏”等。学生在活动中可以进一步经历数学知识的应用过程,感受自己身边的数学知识,体会学数学、用数学的乐趣。
基于以上分析,确定了以下教学目标:
1.进一步掌握10以内数的顺序、组成及计算,区分它们的基数、序数含义。
2.了解同一问题可以有不同的解决方法,培养有条理地进行思考的能力。
3.经历数学知识的应用过程,感受自己身边的数学知识,体会学数学、用数学的乐趣。
二、学生分析
学生认识了0~10并掌握了10以内的加减法后,已具备了解决一些简单实际问题的能力。但由于日常教学中,班上的人数较多,活动空间有限,组织起来也较困难。如何创造性地使用教材,以便全班同学都能在有限的时间和空间内,主动、有序、愉快地参与到各个活动中来,是本节课急需解决的一个问题。
三、设计理念
未来的社会既需要学生具有获取知识的能力,也需要学生具有应用知识的能力,而知识也只有在能够应用时才具有生命力,才是活的知识。为此,我在现有教材内容的基础上,根据班上的实际情况,设计了几个贴近学生生活的实践活动。
四、教学流程
(一)创设情境,导入实践活动课。
1、课件展示——“数学乐园”全景图。
师:同学们,你们喜欢做游戏吗?今天老师想和你们一块儿去“数学乐园”做游戏,你们想不想参加?
2、师板书课题:数学乐园
3、用奖“数字之星”的方法激励学生多发言、多动脑。
(二)活动1:走迷宫游戏。
(1)复习对0~10各数的认识。
①说数字:学生说出通过这段时间学习认识的数字0~10,教师贴出相应的数字卡片,每张卡片上有一个娃娃头。
②用数字:引导学生用黑板上的一个或几个“数字娃娃”说一句话。
③找数字:启发学生找找生活中有哪些地方用到了“数字娃娃”,体会数字的重要性,并邀请“数字娃娃”一块儿做游戏。
④排数字:启发学生按一定的顺序给“数字娃娃”排队,点一个学生在黑板上排,其他学生分别在自己桌面上排数字卡片。教师注意引导学生思考不同的摆法。
(2)故事引入“走迷宫”活动。
(出示小黑板)教师以一个《小白兔迷路》的故事导入:
一天,小白兔出去玩,走着走着,突然迷路了,这怎么办呀?它给妈妈打电话:“妈妈,我迷路了,怎么办才好呀?”妈妈听了点了点头说:“孩子,你长大了,自己的事情应该自己去做,只要你按1、2、3、4……的顺序走到9就一定能回家的。”于是聪明的小白兔按妈妈的话去做,终于回家了。同学们,你们知道小白兔可能是怎样走的吗?
(3)学生独立走迷宫——帮助小白兔找家。
让四个学生分别在四块小黑板上用不同色的粉笔画不同路线,其他学生在课本上画出小白兔回家的路线。
(4)比比谁想得多,进行评价奖励。
(5)找规律:教师引导学生找其中的规律,如,“从1走到2有几种方法?”“从左边的2走到3有几种走法?”引导学生有条理地进行思考,并作为课后的作业,鼓励学生合作完成。
(三)活动2:对口令游戏。
1、(放快节奏鼓点音乐)师生对口令,如师说“我出3”,生答“我出5”,复习数的组成。
2、同桌互对口令,复习数的组成。
(四)活动3:送信游戏。
学生按四人小组的位置坐好,每人从抽屉里拿出一个反面写有一个数字的信封,然后请学生把桌面上的得数与信封上数字相同的算术卡片放进信封。
请其中一组学生上台演示完成,之后评价,找对的学生表扬自己。
(五)活动4:起立游戏。
1、报数:请两竖行学生从前往后,从后往前报数。
2、数数排第几:让每位同学通过数数和思考,对自己在班上的位置都有一个正确的定位。
3、起立拍手游戏:教师点到从前(后)数第几位学生,该竖行该生就起立拍一下手,之后让学生练习从左数、从右数,使学生进一步感知前后左右等空间的方向,并注意让学生区分几个和第几个这两个易混的概念。
(六)活动5:投掷游戏。
布置好游戏场地,教师点几位学生按规则向篓里投球,共10个球,看能投进几个。同时请一位学生当评判员,用圆片贴在黑板上表示投进球的数量,之后请其他学生当“小记者”,报道几位学生的投球成绩并进行比较。其间还让学生说说有几个球没投进,并说出自己的算法。
(七)课堂小结。
师:今天,我们一块儿到“数学乐园”去逛了逛,你们开不开心?其实只要你们留心就会发现生活中有很多的数学知识,你们想不想学习更多的数学本领呢?老师相信,只要你们努力,就一定会成为生活中的“小小数学家”。9:38:38
教资面试初中数学教案
【篇1:教师招聘面试教案(初中数学)】
教师招聘面试教案——初中数学 三角形全等的判定()
一、教学内容
本节课主要内容是探索三角形全等的条件(),及利用全等三角形进行证明.
二、教学目标
(一)知识与技能
了解三角形的稳定性,会应用“边边边”判定两个三角形全等.
(二)过程与方法
经历探索“边边边”判定全等三角形的过程,解决简单的问题.
(三)情感、态度与价值观
培养有条理的思考和表达能力,形成良好的合作意识.
三、重、难点与关键
(一)重点:掌握“边边边”判定两个三角形全等的方法.
(二)难点:理解证明的基本过程,学会综合分析法.
(三)关键:掌握图形特征,寻找适合条件的两个三角形.
四、教具准备
一块形状如图1所示的硬纸片,直尺,圆规. 五、教学方法
采用“操作──实验”的教学方法,让学生亲自动手,形成直观形象.
六、教学过程
(一)设疑求解,操作感知
【教师活动】(出示教具)
问题提出:一块三角形的玻璃损坏后,只剩下如图2所示的残片,?你对图中的残片作哪些测量,就可以割取符合规格的三角形玻璃,与同伴交流.
【学生活动】观察,思考,回答教师的问题.方法如下:可以将图1?的玻璃碎片放在一块纸板上,然后用直尺和铅笔或水笔画出一块完整的三角形.如图2,?剪下模板就可去割玻璃了.
【理论认知】 如果△abc≌△a′b′c′,那么它们的对应边相等,对应角相等.?反之,?如果△abc与△a′b′c′满足三条边对应相等,三个角对应相等,即ab=a′b′,bc=b′c′,ca=c′a′,∠a=∠a′,∠b=∠b′,∠c=∠c′.
这六个条件,就能保证△abc≌△a′b′c′,从刚才的实践我们可以发现:?只要两个三角形三条对应边相等,就可以保证这两块三角形全等.
信不信?
【作图验证】(用直尺和圆规)
先任意画出一个△abc,再画一个△a′b′c′,使a′b′=ab,b′c′=bc,c′a′=ca.把画出的△a′b′c′剪下来,放在△abc上,它们能完全重合吗?(即全等吗)
【学生活动】拿出直尺和圆规按上面的要求作图,并验证.(如课本图11.2-2所示)
画一个△a′b′c′,使a′b′=ab′,a′c′=ac,b′c′=bc: 1.画线段取b′c′=bc;
2.分别以b′、c′为圆心,线段ab、ac为半径画弧,两弧交于点a′; 3.连接线段a′b′、a′c′.
【教师活动】巡视、指导,引入课题:“上述的生活实例和尺规作图的结果反映了什么规律?”
【学生活动】在思考、实践的基础上可以归纳出下面判定两个三角形全等的定理.
(1)判定方法:三边对应相等的两个三角形全等(简写成“边边边”或“”).
(2)判断两个三角形全等的推理过程,叫做证明三角形全等.
【评析】通过学生全过程的画图、观察、比较、交流等,逐步探索出最后的结论──边边边,在这个过程中,学生不仅得到了两个三角形全等的条件,同时增强了数学体验.
一、教学目标:
知识与技能:认识角的度量单位及量角器,学会利用量角器进行角的度量。
过程与方法:通过动手操作,用量角器测量角的过程,锻炼学生的实践操作能力。
情感态度与价值观:养成学生独立思考、合作交流探究的良好品质。
二、教学重难点
重点:用量角器测量角的步骤。
难点:量角器测量角时内外圈的选择。
三、教学过程
1、导入新课
根据游戏“愤怒的小鸟”,向学生提出问题:我们平时玩游戏的时候,是调整什么才能打到小猪呢?让学生初步对于角度这个概念有一定的认识,并在黑板上画出在游戏过程中,发现会存在不同大小的角,向学生提问:对于两个角来说如何确切的知道它们之间差多少呢?继而引出本节课的课题,角的度量。
2、新课教学
1)学生根据之前学习过的经验,会用三角板先测量角的大小,但是会发现这种方法还是不能具体知道两角之间究竟相差多少。
2)通过多媒体展示出角被平均分为360份,每一份就叫做1度,写作1。从而引出角的度量单位。
3)指导阅读:让学生观察手中的量角器,自学书本上第18页下半部分的内容。
提出要求:思考并在小组内交流,关于量角器你知道些什么?
班级反馈对量角器的认识。(多媒体出示量角器的放大图片供学生交流使用)
提问:量角器上有角吗?有多大的角?最大的角?最小的角?
要求:指出量角器上不同度数的角,并找到量角器上的角的顶点。
读出量角器上的一些角的度数。
多媒体课件显示量角器上1°、30°、78°、140°的角。(读内、外圈数的角都有)
4)请学生动手尝试用量角器量出书上∠1的度数,并在小组里说说是怎样量的?班级交流量角的方法。(学生利用实物投影讲解自己量角的`过程。)师生共同总结量角的方法。多媒体展示用量角器量角的动态步骤。(每一步在关键部位闪烁提示)
用量角器量角的方法:
A、量角器的中心点要和角的顶点重合
B、量角器上的0刻度线和角的任意一边重合
C、角的另一条边所对的是角的度数
D、量角器上有两条0刻度线,一条是内圈的,一条是外圈的;0刻度线在内圈,度数就读内圈;零刻度线在外圈,度数就读外圈
总结“中心对顶点,零线对一边,它边看度数,内外要分辨”。
3、巩固新知
1、测量课后第三题角的大小,针对学生出现的问题进行指导。(内外圈度数有误、0刻度线没有和角的一边完全重合)
2、游戏:观察量角器角度的大小,老师随便报出一个度数,学生利用胳膊来表现出这个角的大小。(双臂张开代表180度)
4、小结作业
同桌交流本节课所学习的主要内容,说出测量角的步骤是什么?
课后作业:回去讲量角器的组成部分介绍给家长,并测量生活中见到的角的大小。
四、板书设计:
一、角的度量单位:1度或1。
二、量角器的组成
三、测量角的步骤
分数的基本性质
第一课时
一、教学内容
教材第75页的例1,第76页“做一做”的第1题及第77页练习十四的第1一5题。
二、教学目标
1.知识与技能:通过教学,使学生归纳概括出分数的基本性质,并能理解分数基本性质,运用分数基本性质解题。
2.过程与方法:培养学生的迁移类推能力、抽象概括能力和观察能力。
3.情感与态度:让学生体会到数学知识间的内在联系,感受学习数学知识的价值。
三、重点难点
抽象概括出分数的基本性质。
四、教具准备
每人3张同样的正方形或长方形纸片。
五、教学过程
(一)导入
1.直接口答下面各题的商,说说是怎样想的?根据什么知识?
120 ÷20 = ( 12O×3)÷(30 ×3 ) = ( 120 ÷10)÷(30 ÷10 ) =
(二)教学实施
1.教学教材第75页的例1。
让学生拿3张同样的正方形或长方形纸片,分别对折一次、两次、四次,平均分成2份、4份、8份,涂上颜色,分别用分数表示涂色部分。
提示:你发现了什么?板书:
为什么相等?
2.引导学生观察它们的分子、分母各是按照什么规律变化的?学生以小组为单位讨论,请代表发言。
随着学生汇报,老师板书。
(从左往右观察)(从右往左观蔡)
3.提问:你还能举出这样的例子吗?
学生举例,老师分别板书出来。
4.观察以上例子,你得出什么结论?(学生讨论,汇。)板书:分数的分子和分母同时乘或者除以相同的数(0除外),分数的大小不变。
提问:为什么0要除外?(学生讨论)
小结:分子和分母如果都乘上0,则分数成为
,而分数的分母不能为O;又因为0不能作除数,所以分数的分子和分母也不能同时除以O。
5.提问:你能不能根据分数与除法的关系和商不变的性质来说明分数的基本性质?
6.完成教材第76页“做一做”的第1题。说一说自己是怎样想的?学生根据分数的基本性质思考并说明思路。
7.完成教材第77页练习十四的第1题。
学生先独立涂色,范文,然后比较大小并说明理由。
8.完成教材第77页练习十四的第2题。学生独立完成,说一说是怎样比较的?可以把
,也可以把
,再比较。
9.完成教材第77页练习十四的第3题。
学生两人一组,由一人说一个分数,另一个人说出一个相等的分数。
10.完成教材第77页练习十四的第4题。
引导学生先应用分数的基本性质,判断哪几个分数是相等的,然后在直线上把这个点画出来。
老师启发学生观察,推算出每个分数中分子与分母可以同时除以几,得到一个与原分数相等的分数。
11.完成教材第77页练习十四的第5题。
进行口答练习。
(四)思维训练
1.一个分数的分母不变,分子乘3,这个分数的大小有什么变化吗?如果分子不变,分母除以5呢?
2.在下面的括号里填上适当的数。
9÷15 =
= 6÷()=()÷6
(五)课堂小结
通过本节的学习,知道了什么是分数的基本性质,并会应用分数的基本性质解决一些简单的数学问题。
高中数学教案
精选高中数学教资面试教案两篇
第一篇《函数的单调性》
1.题目:函数的单调性
2.内容:
3.基本要求
(1)试讲时间约10分钟;
(2)创设问题进行导入,建立与已学知识之间的联系;
(3)采用恰当的教学方法,让学生直观感受数形结合思想。
4.考核目标:教学设计,教学方法,教学实施。
课时:
1课时
课型:
新授课
教学目标:
1、知识与技能:从形与数两方面理解单调性的概念,初步学会利用函数图象和单调性定义判断、证明函数单调性的方法。
2、过程与方法:通过对函数单调性定义的探究,提高观察、归纳、抽象的能 力和语言表达能力;通过对函数单调性的证明,提高推理论证能力,体验数形结合思想方法。
3、情感态度价值观:通过知识的探究过程养成细心观察、认真分析、严谨论证的良好思维习惯;感受用辩证的观点思考问题。
教学重点:
函数单调性的概念形成和初步运用。
教学难点:
函数单调性的概念形成。
教学过程:
(一)创设情境,导入新课
教师活动:分别作出函数y=2x,y=-2x和y=x2+1的图象,并且观察函数变化规律,描述前两个图象后,明确这两种变化规律分别称为增函数和减函数。然后提出两个问题:问题一:二次函数是增函数还是减函数?问题二:能否用自己的理解说说什么是增函数,什么是减函数?
学生活动:观察图象,利用初中的函数增减性质进行描述,y=2x的图象自变量x在实数集变化时,y随x增大而增大,y=-2x的图象自变量x在实数集变化时,y随x增大而减小。在此基础上描述y=x2+1在(-∞,0]上y随x增大而减小,在(0,+∞)上y随x增大而增大。理解单调性是函数的局部性质,在一个区间里,y随x增大而增大,则是增函数;y随x增大而减小就是减函数。
设计意图:数学课程标准中提出“通过已学过的函数特别是二次函数理解函数的单调性”,因此在本环节的设计上,从学生熟知的一次函数和二次函数入手,从初中对函数增减性的认识过渡到对函数单调性的直观感受。通过一次函数认识单调性,再通过二次函数认识单调性是局部性质,进而完善感性认识。
(二)初步探索,形成概念
教师活动:(以y=x2+1在(0,+∞)上单调性为例)让学生理解如何用精确的数
学语言(随着、增大、任取)来描述函数的单调性,进而得到增(减)函数的定义。并进一步提出如何判断的问题。/ 4
高中数学教案
学生活动:通过交流、提出见解,提出质疑,相互补充理解函数定义的解释,讨论表示大小关系时,理解如何取值,明白任取的意义。
设计意图:通过启发式提问,实现学生从“图形语言”到“文字语言”到“符号语言”认识函数的单调性,实现“形”到“数”的转换。
(三)概念深化,延伸扩展
教师活动:提出下面这个问题:能否说f(x)=在它的定义域上是减函数?从这个例子能得到什么结论?并给出例子进行说明:
进一步提问:函数在定义域内的两个区间A,B上都是增(减)函数,何时函数在A∪B上也是增(减)函数,最后再一次回归定义,强调任意性。
学生活动:思考、讨论,提出自己观点,并提出反例,如x1=-1,x2=1,进而得出结论:函数在定义域内的两个区间A,B上都是增(减)函数,函数在A∪B上不一定是增(减)函数将函数图象进行变形(如x
设计意图:通过上面的问题,学生已经从描述性语言过渡到严谨的数学语言。而对严谨的数学语言学生还缺乏准确理解,因此在这里通过问题深入研讨加深学生对单调性概念的理解。
(四)证明探究,应用定义
教师活动:展示例题
例1:证明函数在(0,+)上是增函数
证明:任取且
∴函数在(0,+)上是增函数。
进一步提问:如果把(0,+∞)条件去掉,如何解这道题?要求学生课后思考。
学生活动:根据单调性定义进行证明、讨论,规范出证明步骤:设元、作差、变形、断号、定论,理解根据定义进行判断,体会判断可转化成证明并完成课后思 考题。
设计意图:本环节是对函数单调性概念的准确应用,本题采用前面出现过的函数,一方面希望学生体会到函数图象和数学语言从不同角度刻画概念,另一方面避免学生遇到障碍,而是把注意力都集中在单调性定义的应用上。课标中指出“形式化是数学的基本特征之一,但不能仅限于形式化的表达。高中课程强调返璞归真”因此本题不再从证明角度,而是让学生再次从定义出发,寻求方法,并体会转化思想。
(五)小结评价,作业创新
教师活动:从知识、方法两个方面引导学生进行总结,留出如下的课后作业(1、2、4必做,3选做):
1、证明:函数在区间[0,+∞)上是增函数。
2、课上思考题
3、求函数的单调区间
4、思考P46 探索与研究
学生活动:回顾函数单调性定义的探究过程、证明、判断函数单调性的方法步骤和数学思想方法,完成课后作业。
设计意图:使学生对单调性概念的发生与发展过程有清晰的认识,体会到数学概念形成的主要三个阶段:直观感受、文字描述和严格定义,并且作业实现分层,满足学生需求。
六、板书设计
第二篇《函数的奇偶性》
1.题目:函数的奇偶性
2.内容:/ 4
高中数学教案
3.基本要求:
(1)试讲时间约10分钟;
(2)通过问题设计,联系学生已有知识经验探索新知识;
(3)设计一些基础性例题,以帮助学生理解函数奇偶性的主要特征。
4.考核目标:问题设计,知识归纳,教学实施。
教学设计
课时:
1课时
课型:
新授课
教学目标:
1、知识与技能目标:理解函数的奇偶性及其几何意义。
2、过程与方法目标:经历从图形直观感知到代数抽象概括,从特殊到一般的概念形成过程,培养学生观察、抽象的能力。
3、情感、态度与价值观目标:通过自主探索,体会数形结合的思想,感受数学的对称美。
教学重点:
理解函数的奇偶性及其几何意义。
教学难点:
判断函数奇偶性的方法。
教学准备:多媒体
教学过程:
一、图片展示,引入新课
多媒体展示喜字、蝴蝶、扑克牌、交通标志四幅图片,请学生观察这些图片具有什么样的共同特征。
通过观察,老师适当引导,学生能够发现前两幅图是轴对称的,后两幅图是中心对称的。
继续追问数学中这样的对称,请学生举例说明。由于前几节课都在学习函数,会有部分学生想到有些函数的图像是对称的。
引入课题:今天我们一起来研究图像具有对称特征的函数的性质——奇偶性
二、合作探索,学习新知
1.观察下列函数的图像:说明图像有什么样的特点。
思考1:这两个函数的图像有何共同特征?
思考2:对于上述两个函数,f(1)与f(-1),f(2)与f(-2),f(a)与f(-a)有什么关系?
一般地,若函数y=f(x)的图象关于y轴对称,当自变量x任取定义域中的一对相反数时,对应的函数值相等。即f(-x)=f(x)思考3:怎样定义偶函数?
学生先进行独立思考,然后小组讨论形成小组结论,最后展示本组讨论结果。
师生互动将学生得到的定义进行补充完善最终得到精确的偶函数的定义:设函数f(x)的定义域为D,如果对D内的任意一个数X,都有,且,则这个函数叫做偶函数。练习:判断下列函数是否为偶函数?(口答)
2.观察下面两个函数的图像,回答以下问题。
问题1:观察图像,从对称的角度思考,它们有什么共同特征?
问题2:分别求当自变量x=±1, ±2时的函数值,从中你能发现什么规律?
问题3:是否对于定义域内所有的x,都有类似的情况?
问题4:类比偶函数的定义给出奇函数的定义。/ 4
高中数学教案
学生先进行独立思考后,小组内进行交流,形成小组最后结论,最终展示本组成果。
小组代表展示结果后,师生互动得出奇函数的定义:设函数f(x)的定义域为D,如果对D内的任意一个数X,都有,且,则这个函数叫做偶函数。练习:判断下列函数是否为偶函数?(口答)
3.强化定义,深化内涵
对奇函数、偶函数定义的说明:
(1)如果一个函数f(x)是奇函数或偶函数,那么我们就说函数f(x),具有奇偶性。
(2)函数具有奇偶性的前提是:定义域关于原点对称。
(3)若f(x)为奇函数,则f(-x)=-f(x)成立;若f(x)为偶函数,则f(-x)=f(x)成立。
三、讲练结合,巩固提升
例1.利用定义判断下列函数的奇偶性
小结:用定义判断函数奇偶性的步骤: :
(1)先求定义域,看是否关于原点对称;
(2)再判断f(-x)与f(x)的关系;
(3)若f(-x)=f(x)则f(x)是偶函数;若f(-x)=-f(x),则f(x)是奇函数。
例题2:利用定义判断下列函数的奇偶性
四、总结升华
师生一起回顾函数奇偶性的定义,图像性质,已经如何判断一个函数的奇偶性。
五、布置作业
1.教材42页习题
2.设f(x)是定义在R上的奇函数,当x>0时,f(x)=2x+1,求x
板书设计:
函数的奇偶性
偶函数:
奇函数:
判断函数奇偶性步骤: 一看
三判断/ 4
教学目标
1、结合生活实际、理解多一些,多得多、少一些、少得多和差不多的含义。
2、能在具体情境中描述数的相对大小关系。
养成教育训练点
培养学生自主探究、合作交流的学习习惯。
教学重点
理解多一些,多得多、少一些、少得多和差不多的含义。
教学难点
正确描述情境中的数的相对大小关系。
教学过程
一、创设情境
教师出示3杯饮料,量的多少不同,让学生从视觉上直观体验“多一些,多得多、少一些、少得多”这四个词的含义。
教师出示小小养殖场的情境图,让学生观察。你从图中看到了什么?
二、学习新知
1、学生交流看到了什么?
2、请学生用“谁多谁少”说一说。
自己说,同桌说,全班说。
通过全班说让学生正确建立谁比谁怎么多啊,多得多,多一些。谁比谁怎么少啊,少一些,少得多。
还有差不多等概念。通过举例子让学生明白“差不多”的概念。
如:一(6)班男生有38个,女生有36个,我们就可以说他们班男生和女生的人数差不多。
3、想一想:初步运用所学知识。
跑步的有86人,跳远的比跑步的少得多,跳绳的比跑步的少一些。
跳远的可能有多少人?跳绳的可能有多少人?学生选择后画圈,并说明白为什么这样选。
88人()、12人()、76人()。
三、巩固反馈
1、小红跳了38下,小男孩比小红多一些。小女孩比小红多得多。
男孩可能跳了多少下?(画钩)女孩可能跳多少下?(画钩)
35428542885
()()()()()()
2、第2和3题,引导学生看清题意,认真思考后,再独立选择答案。选择后全班交流,并说说自己选择的道理。
3、数学游戏。
猜数。
同桌合作,
方法:一人猜数,另一人语言提示。
例如:
甲:我想了一个两位数。
乙:是20吗?
甲:不是,比20多得多。
乙:是70吧。
甲:比70少一些。
四、课堂总结
这堂课上,你感觉最快乐的是什么地方?为什么?
一.说教材
(一)教学内容
本节课主要内容是命题的概念,能把命题改写若p则q的形式,渗透由特殊到一般的化归数学思想。
(二)教材的地位作用
命题的概念,若p则q形式的命题是本章的重要内容,是后续学习充要条件的基础,这一章我们在初中的基础上学习常用逻辑用语,体会逻辑用语去表达和论证中的作用,他将成为反证法的理论依据,并为进一步学习,特别是培养学生的思维能力,推证能力打基础
(三)教学目标
1、知识与技能:
(1)理解命题的概念和命题的构成,能判断给定陈述句是否为命题,能判断命题的真假;
(2)能把命题改写成“若p,则q”的形式;
2、过程与方法:
(1)多让学生举命题的例子,培养他们的辨析能力;
(2)能把命题改写成“若p,则q”的形式;培养学生发现问题、提出问题、分析问题、有创造性地解决问题的能力;培养学生抽象概括能力和思维能力.
3、情感、态度与价值观:
通过学生的参与,激发学生学习数学的兴趣。
(四)教学重点:
命题的概念、命题的构成
(五)教学难点:
分清命题的条件、结论和判断命题的真假
二、说教法
教学过程是教师和学生共同参与的过程,是师生多向合作的过程,鼓励学生自主学习,充分调动学生的积极性、主动性。以学生发展为本,有效的渗透数学思想方法,提高学生素质,根据这样的原则和所要完成的教学目标,并为激发学生的学习兴趣,我采用如下的教学方法:
(1)引导发现法
(2)练习巩固法
三、说学法
教给学生学习方法比教给学生知识更重要,本节课注意调动学生积极思考,主动探索,尽可能地让学生参与到教学活动中,我进行如下学法指导:
(1)由特殊到一般的划归方法:学习中学生在教师的引导下,通过具体的案例,让学生去观察、讨论、探索、分析、发现、归纳、概括
(2)练习巩固法
四、教学过程
学生探究过程:
1.思考、分析
下列语句的表述形式有什么特点?你能判断他们的真假吗?
(1)三角形的三个内角之和等于1800
(2)如果a,b是任意两个正实数,那么a+b≥2(ab)1/2;
(3)如果实数a满足a2=9,则a=3;
(4)中学生目前的学业负担过重;
(5)中国将在本世纪中叶达到中等发达国家的水平
2.讨论、判断
学生通过讨论,总结:所有句子的表述都是陈述句的形式,每句话都判断什么事情。其中(1)(2)为真,(3)为假,(4)(5)的真假需要根据实际情况确定,总是可以确定真假.
教师的引导分析:所谓判断,就是肯定一个事物是什么或不是什么,不能含混不清。
3.抽象、归纳
定义:一般地,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.
命题的定义的要点:能判断真假的陈述句.
在数学课中,只研究数学命题,请学生举几个数学命题的例子.教师再与学生共同从命题的定义,判断学生所举例子是否是命题,从“判断”的角度来加深对命题这一概念的理解.
例1判断下列语句中哪些是命题?是真命题还是假命题?
(1)空集是任何集合的子集;(真命题)
(2)若整数a是素数,则a是奇数;(假命题)
(3)指数函数是增函数吗?(不是)
(4)若空间中两条直线不相交,则这两条直线平行;(假命题)
(5)x>15.(不是)
让学生思考、辨析、讨论解决,且通过练习,引导学生总结:判断一个语句是不是命题,关键看两点:第一是“陈述句”,第二是“可以判断真假”,这两个条件缺一不可.疑问句、祈使句、感叹句均不是命题.
判断下列语句中哪些是命题?是真命题还是假命题?
(4)求证∏是无理数
(5)若X是实数,则X2+4X+5≥0
4.命题的构成――条件和结论
上面例1中的(2)(4)具有“若p,则q”的形式.在数学中,这种形式的命题是常见的.
“若p,则q”也可写成“如果p,那么q”“只要p,就有q”等形式.
其中p叫做命题的条件,q叫做命题的结论.
例2指出下列命题中的条件p和结论q;
(1)若整数a能被2整除,则a是偶数;
(2)若四边形是菱形,则它的对角线互相垂直且平分
(1)条件p:整数a能被2整除,结论q:整数a是偶数;
(2)条件p:四边形是菱形,结论q:四边形的对角线互相垂直且平分。
有一些命题表面上不是“若p,则q”的形式,但可以改写成“若p,则q”的形式,例如:
垂直于同一条直线的两个平面平行。
若两个平面垂直于同一条直线,则这两个平面平行。
例3将下列命题改写成“若p,则q”的形式,并判断真假;
(1)垂直于同一条直线的两条直线平行;
(2)负数的立方是负数;
(3)对顶角相等;
(1)若两条直线垂直于同一条直线,则这两条直线平行,它是假命题。
(2)若一个数是负数,则这个数的立方是负数。它是真命题。
(3)若两个角是对顶角,则这两个角相等。它是真命题。
5.练习:P4:
6.课堂小结
(1)、命题的概念
(2)、能指出命题的条件和结论
7.思考题
一,下列四个命题中,命题(1)与命题(2)(3)(4)的条件和结论之间分别有什么系?
(1)若f(x)是正弦函数,则f(x)是周期函数;
(2)若f(x)是周期函数,则f(x)是正弦函数;
(3)若f(x)不是正弦函数,则f(x)不是周期函数;
(4)若f(x)不是周期函数,则f(x)不是正弦函数;
二,四种命题中任意两个命题之间有关系吗?是什么关系?它们的真假性之间有关系吗?是什么关系?
8.作业 P8:习题1.1A组第1、题
一、教学目标:
1、通过学习,使学生掌握四则运算和含有小括号的四则混合运算顺序,并学会正确计算。
2、通过学习,养成认真审题,规范书写,仔细计算的习惯。
二、教学重难点:
使学生掌握含括号的四则运算。
三、教学设备:
幻灯片、小黑板。
四、教学过程:
复习准备
星期天,爸爸妈妈带着玲玲去“冰雪天地”游玩,购买一张成人票需要24元,儿童票半价。购买门票需要花多少钱?学生在练习本上解答此问题。同桌两人说说自己是怎样解答的。
汇报:教师根据学生的汇报进行板书。
(1)242424÷2242412481260(元)24÷2是一张儿童票的价钱,是半价,所以用24÷2,前两个24是爸爸和妈妈的两张成人票的总价。两张成人票加上一张儿童票就是他们购买门票需要多少钱。
(2)24×224÷2481260(元)24×2是爸爸和妈妈两张成人票的总价,玲玲的儿童票用24÷2,再把三张门票的价钱加在一起就是总门票的价钱。我们用不同的方法解决了同一个问题,这两个综合算式有什么共同特点?这两个综合算式都是没有括号的,而且算式中有加减法也有乘除法。这样的综合算式的运算顺序是什么?学生总结运算顺序。
新课教学
1、(小黑板出示)先读出下面各题的运算顺序,再算出来。120—144÷18+35(58+37)÷(64—45)
(1)学生口述运算顺序,教师用框线图表示顺序。
(2)集体校对,说明注意点。
2、教学例1。
(1)把准备题
①中的144改写成36×4的形式,引出例1,120—36×4÷18+35
(2)问这道题中应先算什么?再算什么?乘除法在一起,你认为应当怎样计算?
(3)全班同学统练,一生板演,集体校对,讲评。
3、教学例2。
(1)把准备题②中的45改写成9×5的形式,引出例2,(58+37)÷(64一9×5)
(2)比较例2与准备题的异同,确定运算顺序。
(3)独立完成并自我评价,指名让一名学生向全班作汇报。
4、练习“试一试”。
(1)板书:1515—15×(94+54÷9)
(2)同桌同学互相交流,并独立进行计算。
(3)用投影校对典型错例,归纳并作出鼓励性评价。
5、师生共同归纳小结。
巩固练习
1、投影出示,让全体学生做填空题。
(1)280—43×6+540÷36可以同时计算的是x和x。
(2)120+(28×5—120)÷10第一步应该算x。
(3)100—(80+480÷24)×8第二步应该算x。
(4)317+104÷13×52一270最后一步应该算x。
2、课本“练习”第1题,先说出下面各题的运算顺序,再计算。
(1)请每位学生首先认真对4个小题进行审题。
(2)学生独立完成各题。
(3)全班集体校对,指出错误原因并订正。总结通过本节课的学习,特别是再看例1、例2使我们明白,在四则混合运算中,我们应先看清楚,再想明白,然后做正确。
课型:
新授课
课时:
1课时
教学目标:
1、知识与技能目标
理解分数乘整数的算理,并能熟练地进行分数乘整数的计算。
2、过程与方法目标
在分析、讨论过程中,提高学生运用旧知学习新知的能力。
3、情感、态度与价值观目标
培养数学科学研究的思维习惯,体验数学与实际生活的紧密联系。
教学重点:
理解分数乘整数的算理,能进行分数乘整数的计算。
教学难点:
归纳总结分数乘整数的的计算法则。
教学准备:课件图片
教学过程:
一、创设情境,导入新课
展示苹果的图片,5个篮子,每个篮子里有6个苹果,让学生提数学问题,如计算苹果总数(6+6+6+6+6=6×5)。接下来,教师提问从第一个篮子里拿出一个苹果,相当于拿出了这个篮子苹果数的几分之几?如果从每个篮子里各拿出一个苹果,一共拿出了几分之几?给大家讨论的时间,适当提示学生,相当于拿出了几个1/6,列分数加法式(1/6+1/6+1/6+1/6+1/6)
得出结果,询问大家的计算方法,然后问有没有更简单的方法呢?引出今天的课题。
二、交流讨论,探究新知
1、让学生观察连加算式,并启发学生列式 ×5。师生共同完成计算过程。
2、让学生尝试总结分数乘整数的方法。教师把 ×5改为5× ,师生共同完成计算。
3、把苹果放回篮子,重新取出,每个篮子各取2个,让学生试着列出算式(2/6×5),并引导他们发现问题,得出结果不是最简分数,应该约分。(有的会在算前约分,有的在算后约分)让同学讨论,哪个更简便。这时可以出一些题,让同学竞赛计算,体会算前约分的重要性。(7/30×10)
三、解释应用,巩固新知
课本中试一试的习题,4/5×3=?,5×1/3=?
学生掌握算法后,在具体实际问题中应用。拖拉机耕地,每小时耕这块地的1/9,一天工作7个小时,耕了这块地的几分之几?
四、回顾总结
让学生来总结今天的收获:
1、分数乘整数的算法;
2、体会数学与实际生活的紧密联系,鼓励大家好好学习数学。
五、布置作业
老师从学校走到家要2/7h,走路的话每小时走5km,骑自行车的话,每小时14km,开汽车每小时走30km,回家的方式不一样,走的路线就不一样,请同学计算每条路线分别要走多少千米。找一找生活中有哪些平行和垂直的现象?
板书设计:
分数乘整数
分数乘整数:
1、分子和整数相乘,分母不变
2、能约分的要先约分
1/6+1/6+1/6+1/6+1/6=(1+1+1+1+1)/6=5/6 6+6+6+6+6=6×5
=1×5/6
2/6×5=10/6=5/3 =1/3×5
15/30×10=?
小学数学教资面试试讲万能模板
第一板块:导入
1.同学们,上课之前先来看下老师今天给大家带来的几张图片(也可以是一段视频),请同学们认真观察,看下你们能从中发现怎样的数学信息,并且提出相应的数学问题。
2.同学们,我是你们的XX老师,很开心将要跟你们渡过一节愉快的数学课,你们准备好了吗?(好)上课,同学们好,请坐
3.同学们,短片播放完了,你们看后有什么感受?能不能跟老师分享一下,哪位同学先来?好,你先来
4.同学们提出了这么多有价值的数学问题,那我们今天就先来研究一下。。这个问题(课本例题),同学们翻开书本xx页
第二板块:新授
1.好,同学们,那关于这个问题呢,我们先独立思考下,然后启动我们的四人小组进行合作交流,时间x分钟,时间结束之后呢,老师请各小组代表来汇报下你们的讨论结果,好,开始吧
2.看来同学们都已经有了自己的想法,不过集体的力量是强大的,老师特别期待你们4人小组能进行头脑风暴,碰撞出思维的火花。所以同学们不着急,把你的想法和组员交流一下,不过记得要及时填写小组合作探究单哦
3.哪个小组愿意来分享一下你们组的讨论结果?好,第一小组的同学手举得最高,那这第一个机会就给你们吧,其他小组要认真听哦,如果有不同意见的一会可以进行补充,好,开始吧 4.嗯,刚才第二小组的观点是。。(老师复述)思路很清晰,讲解的也很详细,让我们把掌声送给他们
5.嗯,这个小组有不同的看法,老师就喜欢与众不同的,你们来说说。。6.老师发现有一个同学一直坐在那里,虽然他没有举手,但是他的眼神告诉我对于这道题很有想法,xx同学你来试一下吧,说错没有关系,大胆一些
7.同学们,让我们动手探究一下,一边动手操作,一边动脑思考,相信你会有更多的发现
8.那现在我们一起来总结一下大家的发现,转化成我们的数学语言应该怎么表述呢?来,同学们,跟着老师一起来
第三板块:巩固练习
1.同学们知识学完了,那老师现在要出几道题目来考考大家,看下同学们是不是真的都把知识点掌握牢固了
2.来,同学们翻开课本x页,完成一下书本上做一做的两题,做完好,可以先跟同桌核对一下答案一会老师再公布正确答案
3.同学们,现在进入我们的闯关游戏,第一关,开火车。。第二关,青蛙过河。。第三关,勇攀高峰。。
第四板块:课堂小结
1.同学们,愉快的一节课马上就要结束了,这节课你们都有什么收获呢?哪位同学来分享一下。好,你来说。哦,你说,你学到了。。(老师讲述)嗯,很好,把这节课的重点知识掌握了。还有其他同学来分享一下的吗?好,你来说。。2.同学们,这节课马上就要结束了,老师想请一位同学借助思维导图的方式把我们这节课的知识点做个梳理
第五板块:板书
一定要记得写板书哦,在黑板中间偏左一点的位置进行板书的书写,字迹工整,布局合理,结束后记得檫黑板哦 最后预祝大家顺利通过面试!!
第1篇:高中数学教资面试教案高中数学教案精选高中数学教资面试教案两篇第一篇《函数的单调性》1.题目:函数的单调性2.内容:3.基本要求(1)试讲时间约10分钟;(2)创设问题进行导入,建立......
今天我说课的内容是人教版三年级上册第九单元“数学广角”。
一、教材分析
这节课是在学生二年级初步学习组合数的基础上,继续让学生通过观察、猜测、实验等活动找出事物的组合数。教材重在向学生渗透这些数学思想,并初步培养学生有顺序地、全面地思考问题的意识,这也是《标准》中提出的要求:“在解决问题的过程中,使学生能进行简单的、有条理的思考。”基于以上的认识,我确定了本节课的三维教学目标:
1、使学生通过观察、分析、操作等数学活动,找出简单事物的组合数,并培养学生有顺序、全面思考问题的意识。
2、使学生在数学活动中养成与人合作的良好习惯,初步学会有序的表达解决问题的大致方法、过程和结果。
3、使学生在具体情境中感受数学在生活中的广泛应用,增强学生学习数学的兴趣。
教学重、难点:引导学生按一定顺序、全面地思考问题。
二、学情分析
三年级的学生已经具备一定的知识储备和生活经验,能够把物体进行简单的组合,但他们的认识水平还停留在感性层面,无法做到有序搭配。所以本节课,我尽量放手让学生通过操作、观察等方法去主动发现和获取知识。
三、教法与学法
本节课我采用了观察演示和动手操作相结合的方法,调动起了学生的积极性,学生能够自己去发现问题、解决问题,充分建立起了自信。学生在操作实践、自主探究、合作交流、互相评价的学习过程中获取了新知。
四、教学流程
依据新课程所追求的“知识与技能、过程与方法、情感与价值观的三维整合”我设计的教学流程分为以下六个环节:
第一环节:握手问候
所以上课伊始,我和同学们亲切的握手问好。让学生在回答“怎样握才能做到不重复、不遗漏”的基础上初步感知“按一定顺序操作”的重要性,再为学生创设游园的教学情境,从而揭示课题。这样不仅很快拉近了与学生的距离,还使他们感受到数学和生活之间是紧密联系的。
第二环节:穿衣搭配
这一环节是本节课的重点,我创设了游园的情境,并设计搭配服装的环节,学生通过拼摆学具、动笔连线等方法,能够自主设计出6种不同的搭配方式,在后来的实践课中,在学生汇报时,我引导学生总结出几种记录搭配过程的方法,并得出连线加序号的方法最简便,这样的设计既激起了学生对组合的兴趣,又给了学生体验成功的机会,同时也为下面每次有序搭配奠定了基础。
在穿衣搭配这个环节的基础上我又设计了选择早餐、解决门票、设计路线这三个环节,循序渐进的让学生体会到了“按一定顺序操作”的重要性,并学会了“全面的思考问题”,达到了寓教于乐的目的。
最后是第六环节:合影留念
在经历了热情高涨的游园活动后,会演杂技的小猴宝宝和贝贝出现了,全班同学要分别和它们合影,计算出照片数量后,顺势留了一道课后思考题“要是我和宝宝贝贝排成一排照一张像,我们三个的位置有多少种不同的排序方法呢?”这样既调动了学生学习的积极性,又为下节课的教学做好了铺垫。
五、板书设计
本节课我突出重点,把体现本节课主要思想的“按一定顺序思考”板书在黑板的主要位置,并让学生用学具在黑板上操作搭配的方法,更加明确了学生思考的过程。
六、反思总结
在本节课的教学设计中,我创设了学生感兴趣的游儿童乐园的活动。充分调动学生的多种感官,使学生真正地体验到学习活动的乐趣,体验到数学学科的应用,体验到合作探究的成功。然而,本节课在教学实践中也发现不少问题。例如当学生说出各种搭配方法时我不应该急于要归纳、提升方法,可以抓住学生有争议的地方让学生再次体验。如果师生、生生能够进行丰富交流、讨论,学生的识就会提高、思维就会越发活跃。
将本文的Word文档下载到电脑
推荐度: