2023-06-29
2023-03-19
2023-06-15
2023-06-18
2023-07-05
更新时间:2024-02-14 14:57:38 发布时间:24小时内 作者:文/会员上传 下载docx
2023-06-29
2023-03-19
2023-06-15
2023-06-18
2023-07-05
摘要:将数学建模思想融入高等数学的教学中来,是目前大学数学教育的重要教学方式。建模思想的有效应用,不仅显著提高了学生应用数学模式解决实际问题的能力,还在培养大学生发散思维能力和综合素质方面起到重要作用。本文试从当前高等数学教学现状着手,分析在高等数学中融入建模思想的重要性,并从教学实践中给出相应的教学方法,以期能给同行教师们一些帮助。
关键词:数学建模;高等数学;教学研究
一、引言
建模思想使高等数学教育的基础与本质。从目前情况来看,将数学建模思想融入高等教学中的趋势越来越明显。但是在实际的教学过程中,大部分高校的数学教育仍处在传统的理论知识简单传授阶段。其教学成果与社会实践还是有脱节的现象存在,难以让学生学以致用,感受到应用数学在现实生活中的魅力,这种教学方式需要亟待改善。
二、高等数学教学现状
高等数学是现在大学数学教育中的基础课程,也是一门必修的课程。他能为其他理工科专业的学生提供很多种解题方式与解题思路,是很多专业,如自动化工程、机械工程、计算机、电气化等必不可少的基础课程。同时,现实生活中也有很多方面都涉及高数的运算,如,银行理财基金的使用问题、彩票的概率计算问题等,从这些方面都可以看出人们不能仅仅把高数看成是一门学科而已,它还与日常生活各个方面有重要的联系。但现在很多学校仍以应试教育为主,采取填鸭式教学方式,加上高数的教材并没有与时俱进,将其与生活的关系融入教材内,使学生无法意识到高数的重要性以及高数在日常生活中的魅力,因此产生排斥甚至对抗的心理,只是在临考前突击而已。因此,对高数进行教学改革是十分有必要的,而且怎么改,怎么让学生发现高数的魅力,并积极主动学习高数也是作为教师所面临的一个重大问题。
三、将数学建模思想融入高等数学的重要性
第一,能够激发学生学习高数的兴趣。建模思想实际上是使用数学语言来对生活中的实际现象进行描述的过程。把建模思想应用到高等数学的学习中,能够让学生们在日常生活中理解数学的实际应用状况与解决日常生活问题的方便性,让学生们了解到高数并不只是一门课程,而是整个日常生活的基础。例如,在讲解微分方程时,可以引入一些历史上的一些著名问题,如以Vanmeegren伪造名画案为代表的赝品鉴定问题、预报人口增长的Malthus模型与Logistic模型等。 这样,才能激发出学生对高等数学的兴趣,并积极投入高等数学的学习中来。
第二,能够提高学生的数学素质。社会的高速发展不断要求学生向更全面、更高素质的方向发展。这就要求学生不仅要懂得专业知识,还要能够将专业知识运用到实际生活中,拥有解决问题的头脑和实际操作的技能。这些其实都可以通过建模思想在高等数学课堂中实现。高等数学的包容性、逻辑性都很强。将建模思想融入高等数学的教学中,既能提高学生的数学素质,还能锻炼学生综合分析问题,解决问题的能力。通过理论与生活实践相结合,达到社会发展的要求,提高自身的社会竞争力。
第三,能够培养学生的综合创新能力。“万众创新”不仅仅是一个口号,而应该是现代大学生应该具备的一种能力。将数学建模思想融入高等数学教学中,能让大学生从实际生活出发,多方位、多角度考虑问题,提高学生的创新能力。学生的潜力是可以在多次的建模活动中挖掘出来的。因此教师应多组织建模活动,让学生从实际生活中组建材料,不断创新思维,找到解决问题的方式与方法。
四、将建模思想融入高等数学的实践方法
第一,转变教学理念。改变传统教学思想与教育方式,提高学生建模的积极性,增强学生对建模方式的认同。教师不能只是单一的讲解理论知识,还需要引导学生亲自体验,从互动的教学过程中,理解建模思想的重要性。
第二,在生活问题中应用建模思想。其实,很多日常生活中的很多例子,都是可以解决课堂上的问题的。数学是来源于生活的。作为教师,应该主动引领学生参与实践活动,将课本的知识尽量与日常问题联系到一起,发动学生主动用建模思想解决问题,提高创新能力,从不同的角度,以不同的方式提高解决问题的能力。例如,学校要组织元旦晚会,需要学生去采购必需品。超市有多种打折的方式,这时候教师就可以引导学生使用建模思想,要求去学生以模型来分析各种打折方式的优缺点,并选择最优惠的方式买到最优质的晚会用品。这样学生才会发现建模的乐趣,并了解如何在生活案例中应用建模思想。
第三,不断巩固和提高建模应用。数学建模思想融入生活实践不是一蹴而就的,而是一个不断实践、循序渐进的过程。人们也不能为了应用建模思想而将日常生活生拉硬套。教师也应该尽可能多地搜集生活中的案例,将建模思想与生活实践更灵活地联系在一起。不断地由浅入深,将建模思想牢牢地印在学生的脑海中。并根据每个学生的独特性,不断开发学生的创新潜力和发散思维能力,提高逻辑思维能力和空间想象力,在实践中巩固深化建模思想。五、结束语综上所述,将建模思想融入高等数学教学中,能显著提高课堂教学质量和学生解决问题的能力,因此教师应从整体上把握高数的教学体系,让学生逐步建立建模思维,不断深化和巩固用建模思想解决问题的能力。只有这样,融入数学建模思想的高等数学的教学效果才会起到应有的作用。
一、在高等数学教学中运用数学建模思想的重要性
(1)将教材中的数学知识运用现实生活中的对象进行还原,让学生树立数学知识来源于现实生活的思想观念。
(2)数学建模思想要求学生能够通过运用相应的数学工具和数学语言,对现实生活中的特定对象的信息、数据或者现象进行简化,对抽象的数学对象进行翻译和归纳,将所求解的数学问题中的数量关系运用数学关系式、数学图形或者数学表格等形式进行表达,这种方式有利于培养、锻炼学生的数学表达能力。
(3)在运用数学建模思想获得实际的答案后,需要运用现实生活对象的相关信息对其进行检验,对计算结果的准确性进行检验和确定。该流程能够培养学生运用合理的数学方法对数学问题进行主动性、客观性以及辩证性的分析,最后得到最有效的解决问题的方法。
二、高等数学教学中数学建模能力的培养策略
1.教师要具备数学建模思想意识
在对高等数学进行教学的过程中,培养学生运用数学建模思想,首先教师要具备足够的数学建模意识。教师在进行高等数学教学之前,首先,要对所讲数学内容的相关实例进行查找,有意识的实现高等数学内容和各个不同领域之间的联系;其次,教师要实现高等数学教学内容与教学要求的转变,及时的更新自身的教学观念和教学思想。例如,教师细心发现现实生活中的小事,然后运用这些小事建造相应的数学模型,这样不仅有利于营造活跃的课堂环境,而且还有利于激发学生的学习兴趣。
2.实现数学建模思想和高等数学教材的互相结合
3.理清高等数学名词的概念
高等数学中的数学概念是根据实际需要出现的,所以在数学的教学中,教师要引起从实际问题中提取数学概念的整个过程,对学生应用数学的兴趣进行培养。例如在高等数学
教材中,导数和定积分是其中的比较重要的概念,因此,教师在进行教学时,要引导学生理清这两个的概念。比如导数概念是由几何曲线中的切线斜率引导出来的,定积分的概念是由局部取近似值引出的,将常量转变为变量。
4.加强数学应用问题的培养
高等数学中,主要有以下几种应用问题:
(1)最值问题
在高等数学教材中,最值问题是导数应用中最重要的问题。教师在教学过程中通过对最值问题的解题步骤进行归纳,能够有效地将数学建模的基本思想进行反映。因此,在对这部分内容进行教学时,要增加例题,加大学生的练习,开拓学生的思维,让学生熟练掌握最值问题的解决办法。
(2)微分方程
在微分方程的教学中运用数学建模思想,能够有效地解决实际问题。微分方程所构建的数学模型不具有通用的规则。首先,要确定方程中的变量,对变量和变化率、微元之间的关系进行分析,然后运用相关的物理理论、化学理论或者工程学理论对其进行实验,运用所得出的定理、规律来构建微分方程;其次,对其进行求解和验证结果。微分方程的概念主要从实际引入,坚持由浅入深的原则,来对现实问题进行解决。例如,在对学生讲解外有引力定律时,让学生对万有引力的提出、猜想进行探究,了解到在其发展的整个过程中,数学发挥着十分重要的作用。
(3)定积分
微元法思想用途比较广泛,其主要以定积分概念为基础,在数学中渗入定积分概念,让学生对定积分概念的意义进行分析和了解,这样有利于在对实际问题进行解决时,树立“欲积先分”意识,意识到运用定积分是解决微元实际问题的重要方法。教师在布置作业题时,要增加该问题的实例。
三、结语
总之,在高等数学中对学生的数学建模能力进行培养,让学生在解题的过程中运用数学建模思想和数学建模方法,能够有效地激发学生的学习兴趣,提高学生的分析、解决问题的能力以及提高学生数学知识的运用能力。
作为工科类大学公共课的一种,高等数学在学生思维训练上的培养、训练数学思维等上发挥着重要的做用。进入新世纪后素质教育思想被人们越来越重视,如果还使用传统的教育教学方法,会让学生失去学习高等数学的积极性和兴趣。以现教育技术为基础的数学建模,在实际问题和理论之间架起沟通的桥梁。在实际教学的过程中,高数老师以课后实验着手,在高等数学教学中融入数学建模思想,使用数学建模解决实际问题。
一、高等数学教学的现状
(一)教学观念陈旧化
就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及逻辑思维能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。
(二)教学方法传统化
教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。
二、建模在高等数学教学中的作用
对学生的想象力、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。
高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。
三、将建模思想应用在高等数学教学中的具体措施
(一)在公式中使用建模思想
在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。
(二)讲解习题的时候使用数学模型的方式
课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。
(三)组织学生积极参加数学建模竞赛
一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。
四、结束语
高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。
高中数学建模小论文要求及范文
一、 论文形式:科学论文
科学论文是对某一课题进行探讨、研究,表述新的科学研究成果或创见的文章。
注意:它不是感想,也不是调查报告。
二、 论文选题:新颖,有意义,力所能及
要求:
1. 有背景.
应用问题要来源于学生生活及其周围世界的真实问题,要有具体的对象和真实的数据。理论问题要了解问题的研究现状及其理论价值。要做必要的学术调研和研究特色。
2. 有价值.
有一定的应用价值,或理论价值,或教育价值,学生通过课题的研究可以掌握必须的科学概念,提升科学研究的能力。
3. 有基础
对所研究问题的背景有一定了解,掌握一定量的参考文献,积累了一些解决问题的方法,所研究问题的数据资料是能够获得的。
4. 有特色
思路创新,有别于传统研究的新思路;
方法创新,针对具体问题的特点,对传统方法的改进和创新; 结果创新,要有新的,更深层次的结果。
5. 问题可行
适合学生自己探究并能够完成,要有学生的特色,所用知识应该不超过
高中生的能力范围。
三、 (数学应用问题)数据资料:来源可靠,引用合理,目标明确 要求:
1.数据真实可靠,不是编的数学题目;
【摘要】
数学建模是人类在探索自然和社会的运作机理中所运用的最有效的方法,也是数学应用于科学技术与社会的最基本的途径。相对来说,在初中数学中建模,需要根据客观上的学生需求,结合教师的实际教学水平,实现一个有效建模。本文主要对初中数学建模思想进行解析。
【关键词】
初中;数学;建模;思想
数学建模,即建立数学模型,是基于建构主义理论的一种主动学习过程,是对现象和过程进行合理的抽象和量化,然后应用数学公式进行模拟和验证的一种模式化思维。初中数学建模思想需要从多个角度出发,例如实际教学情况、学生的学习方式和思维方式的发展、教学框架的改变等。
一、对数学建模的认识
就当下的情况来分析,如果想要应用数学知识去更好地解决实际问题,经常需要在数学理论和实际问题之间构建一个桥梁来加以沟通,便于把实际问题中的数学结构明确表示出来,这个桥梁就是数学模型。本研究根据数学建模上的要求,通过以下步骤来实现数学建模:
从上图可以看到,初中数学建模,首先需要将现实问题抽象化,一般来说,可以通过函数或者是方程的形式,建立一个切合实际的数学模型,通过这种方式,降低现实问题的解决难度。其次,必须根据已经建立的数学模型,作出合理的数学解释。比方说,方程和函数的解决方法不同,最后得到的结果也不同。第三,要对数学结果进行翻译和检验,观察数学结果是否符合实际问题的需求。如果是负数,即便符合数学本身的要求,但是不符合现实问题,此结果必须舍弃。第四,将得到的数学结果代入现实问题中进行解决,看看是否存在合理的解释。整个过程在理论上比较复杂,但在实际应用时,可以在短时间内解决问题,甚至改变问题的方向,寻找到更好的解决方案。
二、初中数学建模思想解析
(一)方程(组)模型
在模型建立当中,方程组模型是一个比较常见的模型。例如:第一季度生产甲、乙两种机械设备,总共生产485台设备,通过技术上的改进,该公司计划在第二季度生产两种机械设备558台。经过统计,甲种机械设备相对于第一季度,增产了15%;乙种机械设备相对于第一季度,增产22%。请问该公司在第一季度生产甲、乙两种机械设备各多少台?这种类型题与现实生活的贴近程度较高,并且与学生的接触面很大,在建模过程中,完全可以根据学生的思维和教师的教学水平进行更好的发挥。
(二)点评
对于现实生活而言,现阶段广泛存在增长率、打折销售等问题,这些问题的相同点在于含有等量关系,可以通过构建方程组模型来解决。初中数学的优点是,总体上的深度不是很难理解,学生在学习数学建模思想时,可以尝试通过以下方法来学习:首先,将教师讲述的案例进行转化,上述的机械生产案例也许不是学生常见的,学生可以将“机械生产”改变为其他的东西,例如纺织生产、零件生产,只要符合主观上的意愿即可;其次,设计出合理的数学建模,方程组仅仅是其中的一种,教师不应该强求学生一定要通过方程组的方式来进行数学建模,还可以通过函数、不等式组等其他方式来解决问题,帮助学生的思维更加灵活,为解决问题提供一个更加广阔的基础;第三,数学建模的具体解决过程,需要通过详细的计算来实现,一般情况下会得到两种结果,有时是一正一负,有时是两个负数,有时是两个正数。得到具体的结果后,要根据问题的实际情况代入解答,这样才算是完成了整个数学建模的建立和解答。
三、其他类型的数学建模
从客观的角度来说,数学科目的奇妙之处在于,将实际问题抽象化之后,解题方法就变得更加宽泛,除了上述的方程组之外,还可以通过其他类型的数学建模来解决。例如不等式组。从教学经验上来分析,不等式组比较适合在市场经营、核定价格、分析盈亏等问题的解答中应用。这些问题并没有一个特别确切的答案,往往会根据实际发展情况来进行解答,不等式组可以缩小范围,将问题的答案更加细致化,避免单纯数值带来的问题不确切、答案不清晰、解决问题不彻底等现象。还有,函数模型也是数学建模思想的重要组成部分。初中数学的要点在于,掌握各种数学知识的基础部分,函数模型符合初中学生的学习心理,可以让学生去钻研和探索。从理论上来说,函数揭示了现实世界数量关系和运动、变化规律,适合解决成本最低、利润最大等问题。函数在运用的过程中,能够更加准确地找到“最高点”和“最低点”,便于问题的精确解答,在代入实际问题时,基本上不需要再一次检验,可以直接得出最优结果。
本文就初中数学建模思想进行了讨论和研究,就当下的情况而言,初中数学建模的确取得了一定的积极成就,教师的教学水平和学生的思维框架都得到了提升。在今后的相关教学工作中,初中数学建模思想还需要进一步提升。首先,建模思想要趋向于多元化;其次,建模方式要形成独特的方案和思路;第三,初中数学建模思想必须具备长效机制,不是一次用完就结束了。相信在日后的努力当中,初中数学建模思想可以获得更大的发展,并且对学生、教师都产生较大的积极意义。
【参考文献】
[1]奚秀琴.建模思想在初中数学教学中的应用[J].数学学习与研究,20_(6).
[2]翟爱国.20_年中考应用问题中的模型构建[J].中国数学教育,20_(Z2).
[3]王允.初中数学应用题教学的研究[J].科学之友,20_(14).
宜宾学院数模竞赛论文模版:
宜宾学院第三届 大学生数学建模竞赛
(20xx年5月19日-5月28日)
参赛题目(在所选题目上打勾) A B 参赛编号(竞赛组委会填写)
论文题目
摘 要
1、摘要:本文解决什么问题,解决问题的方法,结论.
提请大家注意:摘要应该是一份简明扼要的详细摘要(包括关键词),在整篇论文评阅中占有重要权重,请认真书写(注意篇幅不能超过一页,且无需译成英文)。
关键词:
2、正文
一、问题的提出:叙述问题内容及意义.
二、基本假设:写出问题的合理假设.
三、建立模型:详细叙述模型、变量、参数代表的意义和满足的条件及建模
思想.
四、模型求解:求解、算法的主要步骤.
五、结果分析与检验:(含误差分析).
六、模型评价:优缺点及改进意见.
七、参考文献:限公开发表文献,指明出处..
3、附件:计算框图、程序及打印结果.
参考文献 例子
[1]吕显瑞等. 数学建模竞赛辅导教材[M]. 长春: 吉林大学出版社, 20_: 56-98
[2]刘来福,曾文艺. 数学模型与数学建模[M]. 北京: 北京师范大学出版社, 1997: 78-89
摘要:
现代物流产业是当今新型的经济产业,国民经济建设中,其已几乎扩展到国民经济的各个领域,具有广阔的发展前景和巨大的发展潜力。同时现代物流业具有极强的综合性,因而正确的物流需求预测对于物流产业的宏观政策制定,抑或是微观层面的企业规划和经营,都具有指导作用。货物周转量是物流需求非常重要的一项指标,文章结合物流需求的特点,通过货物周转量对具有交通中枢地位的武汉市物流需求影响进行预测。本文运用货物周转量,生产总值两指标,结合20_-20_年武汉地区GDP值,基于双变量线性回归模型方法,对交通枢纽武汉进行物流需求分析预测,以说明武汉未来的物流需求情况。
关键词:
货物周转量;回归模型;物流需求预测
引言
武汉,位于中国腹地中心,物流资源丰富,全国重要的交通枢纽,素有“九省通衢”之称。其在发展现代物流业方面具有得天独厚的优势,因而武汉提出了以发展物流来实现本地经济的“跨越式发展”,并已通过把现代物流业作为新的经济增长点列入全市发展计划之中。
然而,作为新型的经济产业,现代物流业具有很强的综合性。无论是在物流产业的宏观决策上,还是物流企业规划和经营的微观层面,都需要以正确的预测为先导。我国经济已由改革开放后的经济快速增长阶段进入到中速发展过程中,在经济调整和转型之中,已充分认识到现代物流业的重要性,高效的现代物流业对于地区经济发展或者国家经济进步的支撑作用越来越明显,。因此,在这样的背景之下,以合理的物流需求预测为基础所作出科学的决策,是保证物流产业健康发展的必要措施。
一、物流需求预测
物流需求预测,就是利用所能涉及到的历史资料和市场信息,利用一定的经验判断、技术方法和预测模型,对未来的物流需求状况进行科学的分析、估算和推断。物流需求预测的目的主要是确定物流服务供应系统所需的能力,同时为其建设规模提供数据方面的依据。
物流需求预测的意义在于指导和调节人们的物流管理活动,从而能够采取适当的策略和措施,以谋求最大的利益。其作用主要体现在:
(一)物流需求预测是是物流管理的必要环节
对物流发展中的各个因素实施控制是物流企业进行规划和经营的前提,而这种控制需要依靠预测来未完成。因此,物流需求预测是物流管理的必要环节,一切的管理活动必须从对信息的分析和预测开始。
(二)物流需求预测能够改善物流管理
物流管理活动中,若能预测了解和把握市场需求的未来变化,那么相关企业就能够采取有效的战略。可以说,物流需求预测是物流管理的重要手段。
(三)物流需求预测能够为物流发展规划和管理经营决策提供重要的科学依据
物流需求预测可以描绘出市场需求的变动趋势,从而推测出物流发展需求的趋势,并进行比较系统的全面的分析和预见,以避免决策的片面性的局限性。
二、武汉物流需求的双变量线性回归模型预测
(一)回归模型的一般形式
回归分析预测法是一种重要的市场预测方法,其是在分析市场现象自变量和因变量之间相关关系的基础上,来建立变量之间的回归方程,并将其作为预测模型。
回归模型的一般形式为:
式①中,X为自变量,Y为因变量, 和 为未知系数, 为误差分量。当然,模型具有实用价值的前提是拟合度良好且回归系数显著。
(二)回归模型的预测
1.指标的确定
货物周转量,是指各种运输工具在报告期内实际运送的每批货物重量分别乘其运送距离的累计数。其不仅包括了运输对象的数量,还包括了运输距离因素,因而能比较全面地反映运输生产结果。其是反映物流业需求的重要指标。
货物周转量的影响因素很多,通过参考大量文献可知,货物周转量与生产总值存在显著的相关性,综合考虑数据的可查询性,本文选取武汉市近年来的货物周转量和生产总值作为变量,进行双变量线性回归模型分析并进行相应预测。
以货物周转量为因变量,武汉生产总值为自变量。下表是武汉市20_年到20_年的相关原始数据:
2.回归模型设定
一般来说,EXCEL和SPSS在预测应用方面均存在各自的优缺点,鉴于此,本文将二者结合起来应用,充分利用SPSS能够准确容易获取预测值,且模型多样化,快速方便的优势以及EXCEL在绘制图形方面简便的特点,将首先用SPSS进行相关预测模型的选择和预测值确定,再用EXCEL进行预测值绘图,从而简单快速的完成相关预测。则可以设定双变量线性回归模型为:
其中,生产总值为 ,货物周转量为 。
用EXCEL作货物周转量和生产总值的散点图,如图1所示:
3.回归分析
根据上述数据,通过统计软件进行线性回归分析:
4.回归方程有效性检验
(1)拟合优度的检验
则从表中可知,相关性系数为R=,相关性明显;同时调整后的拟合系数R2=,说明在货物周转量的总变差中,模型所作出的解释部分达到了,即模型的拟合效果显著。
(2)回归参数的显著性检验
回归方程的显著性检验结果见上表,统计量F=,相应的置信水平为;,结果表明回归方程非常显著;同时常数和自变量系数的回归方程检验的置信水平由表2知为;,即模型的系数显著。
(3)模型预测效果的检验 通过统计软件得出相应回归模型的同时,将该模型从20_-20_年的预测值保存到数据视图中,如下表所示 从表中可知,货物周转量的绝对误差最大值为;相对误差最;平均相对误差为,可以预见,模型总体预测效果良好。 再从预测值和实际值的曲线图形来比较,将原始数据和预测值数据复制到EXCEL中,利用EXCEL绘图简便的特点,绘制中货物周转量的实际值图形和预测值图形,如下图所示 图2 预测值与实际值的曲线比较 从图中可知,回归预测曲线拟合情况良好,从而进一步证明了回归预测模型的有效性。
三、结论分析
通过对武汉20_-20_年相关数据进行线性回归预测,能够得到如下结论:
第一,由回归预测方程 可知,货物周转量与生产总值(GDP)呈正相关关系,具体表现为一单位的GDP增长,能够引起单位的货物周转量;同时由图2的曲线图可知,货物周转量存在明显的上升趋势。
第二,货物周转量是一个总体规模性指标,是从总量上反映物流需求。
这种方法比较概括,虽存在缺陷,但对物流需求的宏观把握,制定宏观物流发展战略还是颇具价值;同时,本文只研究了生产总值对货物周转量的影响,实际上,货物周围量的影响因素很多,比如宏观面上的经济政策,气候条件,微观层面上的运输距离以及货运总量等;另外,货物周转量只是代表物流需求的一个量,并不能完全代表物流需求,因而需要根据实际情况适实地对其加以修正。
参考文献:
[1]王雪瑞,王昭君.基于双变量线性回归模型的物流需求预测[J].物流科技. 20_(09).
[2]杨帅.武汉市物流需求预测[J].当代经济.20_(10).
[3]汪宇翰.预测物流需求的一元线性回归分析方法 [J].商场现代化.20_(13).
[4]李振,王兴秋,吴耀华.货运量回归预测工具EXCEL和SPSS结合应用研究[J].物流科技.20_(08).
[5]张文彤,闫洁.SPSS统计分析基础教程[M]. 北京:高等教育出版社,20_.
将本文的Word文档下载到电脑
推荐度: