2023-07-05
2023-06-18
2023-07-05
2023-06-29
2023-03-19
更新时间:2024-04-26 18:59:14 发布时间:24小时内 作者:文/会员上传 下载docx
2023-07-05
2023-06-18
2023-07-05
2023-06-29
2023-03-19
一、说教学目标
1、知识传授目标:正确理解和掌握加法原理和乘法原理
2、能力培养目标:能准确地应用它们分析和解决一些简单的问题
3、思想教育目标:发展学生的思维能力,培养学生分析问题和解决问题的能力
二、说教材分析
1.重点:加法原理,乘法原理。解决方法:利用简单的举例得到一般的结论.
2.难点:加法原理,乘法原理的区分。解决方法:运用对比的方法比较它们的异同.
三、说活动设计
1.活动:思考,讨论,对比,练习.
2.教具:多媒体课件.
四、说教学过程正
1.新课导入
随着社会发展,先进技术,使得各种问题解决方法多样化,高标准严要求,使得商品生产工序复杂化,解决一件事常常有多种方法完成,或几个过程才能完成。排列组合这一章都是讨论简单的计数问题,而排列、组合的基础就是基本原理,用好基本原理是排列组合的关键.
2.新课
我们先看下面两个问题.
(l)从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船.一天中,火车有4班,汽车有2班,轮船有3班,问一天中乘坐这些交通工具从甲地到乙地共有多少种不同的走法?
板书:图
因为一天中乘火车有4种走法,乘汽车有2种走法,乘轮船有3种走法,每一种走法都可以从甲地到达乙地,因此,一天中乘坐这些交通工具从甲地到乙地共有4十2十3=9种不同的走法.
一般地,有如下原理:
加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,??,
在第n类办法中有mn种不同的方法.那么完成这件事共有N=m1十m2十?十mn种不同的方法.
(2)我们再看下面的问题:
由A村去B村的道路有3条,由B村去C村的道路有2条.从A村经B村去C村,共有多少种不同的走法?
板书:图
这里,从A村到B村有3种不同的走法,按这3种走法中的每一
种走法到达B村后,再从B村到C村又有2种不同的走法.因此,从A村经B村去C村共有3X2=6种不同的走法.
一般地,有如下原理:
乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,??,做第n步有
mn种不同的方法.那么完成这件事共有N=m1m2?mn种不同的方法.
例1书架上层放有6本不同的数学书,下层放有5本不同的语文书.
1)从中任取一本,有多少种不同的取法?
2)从中任取数学书与语文书各一本,有多少的取法?
解:(1)从书架上任取一本书,有两类办法:第一类办法是从上层取数学书,可以从6本书中任取一本,有6种方法;第二类办法是从下层取语文书,可以从5本书中任取一本,有5种方法.根据加法原理,得到不同的取法的种数是6十5=11.
答:从书架L任取一本书,有11种不同的取法.
(2)从书架上任取数学书与语文书各一本,可以分成两个步骤完成:第一步取一本数学书,有6种方法;第二步取一本语文书,有5种方法.根据乘法原理,得到不同的取法的种数是N=6X5=30.
答:从书架上取数学书与语文书各一本,有30种不同的方法.练习:一同学有4枚明朝不同古币和6枚清朝不同古币
1)从中任取一枚,有多少种不同取法?2)从中任取明清古币各一枚,有多少种不同取法?
例2:(1)由数字l,2,3,4,5可以组成多少个数字允许重复三位数?
(2)由数字l,2,3,4,5可以组成多少个数字不允许重复三位数?
(3)由数字0,l,2,3,4,5可以组成多少个数字不允许重复三位数?
解:要组成一个三位数可以分成三个步骤完成:第一步确定百位上的数字,从5个数字中任选一个数字,共有5种选法;第二步确定十位上的数字,由于数字允许重复,
这仍有5种选法,第三步确定个位上的.数字,同理,它也有5种选法.根据乘法原理,得到可以组成的三位数的个数是N=5X5X5=125.
答:可以组成125个三位数.
练习:
1、从甲地到乙地有2条陆路可走,从乙地到丙地有3条陆路可走,又从甲地不经过乙地到丙地有2条水路可走.
(1)从甲地经乙地到丙地有多少种不同的走法?
(2)从甲地到丙地共有多少种不同的走法?
2.一名儿童做加法游戏.在一个红口袋中装着2O张分别标有数1、2、?、19、20的红卡片,从中任抽一张,把上面的数作为被加数;在另一个黄口袋中装着10张分别标有数1、2、?、9、1O的黄卡片,从中任抽一张,把上面的数作为加数.这名儿童一共可以列出
多少个加法式子?
3.题2的变形
4.由0-9这10个数字可以组成多少个没有重复数字的三位数?小结:要解决某个此类问题,首先要判断是分类,还是分步?分类时用加法,分步时用乘法
其次要注意怎样分类和分步,以后会进一步学习
1.(口答)一件工作可以用两种方法完成.有5人会用第一种方法完成,另有4人会用第二种方法完成.选出一个人来完成这件工作,共有多少种选法?
2.在读书活动中,一个学生要从2本科技书、2本政治书、3本文艺书里任选一本,共有多少种不同的选法?
3.乘积(a1+a2+a3)(b1+b2+b3+b4)(c1+c2+c3+c4+c5)展开后共有多少项?
4.从甲地到乙地有2条路可通,从乙地到丙地有3条路可通;从甲地到丁地有4条路可通,从丁地到丙地有2条路可通.从甲地到丙地共有多少种不同的走法?
5.一个口袋内装有5个小球,另一个口袋内装有4个小球,所有这些小球的颜色互不相同.
(1)从两个口袋内任取一个小球,有多少种不同的取法?
(2)从两个口袋内各取一个小球,有多少种不同的取法?
背景与导读
《排列与组合》是义务教育数学课程标准实验教科书数学(人教版)二年级上册的教学内容。排列与组合的思想方法不仅应用广泛,而且是学习概率统计知识的基础,同时也是发展学生抽象能力和逻辑思维能力的好素材。在教学中,我运用开放式教学方式,把课堂交给学生,让学生当好学习的主角。
片断与反思
(片断一)
师:森林学校的数学课上,猴博士出了这样一道题(课件出示)用数字1、2能写出几个两位数?问题刚说完小动物们都纷纷举手说能写成两个数:12、21。接着猴博士又加上了一个数字3,问:“用数字1、2、3能写出几个两位数呢?”小猪站起来说能写成3个,小熊说5个,小狗说7个,到底能写出几个呢?
生1:我猜有5个。
生2:我猜有8个。……
师:到底有几个两位数呢?请同学们也试着写一写,如果你觉得直接写有困难的话可以借助手中的数字卡片摆一摆。
学生活动教师巡视。(学生所写的个数可能不一样,有多有少,找几份重复的或个数少的展示。)
生1:我写的数有12、21、13、32、23。
生2:我写的数有12、31、23、21、23、32。
生3:我写的数有12、13、21、23、31、32。
学生汇报所写个数,教师根据情况重点展示几份,引导学生发现问题:有的重复写了,有的漏写了。
师:每个同学写出的个数不同,怎样才能很快写出所有的用数字1、2、3组成的两位数,并做到不重复不遗漏呢?
学生以小组为单位交流讨论。
学生汇报:
生1:先写出1在十位上的有12、13;再写出2在十位上的有21、23;再写出3在十位上的有31、32。
生2:用数字1、2能写出12、21;用数字2、3能写出23、32;用数字1、3能写出13、31。
生3:先写出个位是1的有21、31;再写出2在个位上的有12、32;再写出3在个位上的有13、23,小学数学教案《让学生做课堂的主人》。
(引导学生及时评价每一种方法的优缺点,使其把适合自己的方法掌握起来。)
(反思)
排列与组合是学生新接触的知识领域。在开课时用学生感兴趣的童话故事引入,易激起学生探究的兴趣。学生根据自己的实际情况选择不同的方法探究新知体现了不同的孩子用不同的方式学习数学这一新的教学理念,易于吸引不同层次的学生积极主动的参与到活动中来。
引导学生发现写数过程中出现的问题,并就此展开讨论、交流,遵循了学生的认知特点。学生在交流的过程中体验到解决问题方法的多样性,并根据自己的实际选择不同的方法,尊重了学生的主体地位。在此过程中学生收获的不仅是知识本身,更多的是能力、情感。这一过程中培养了学生主动探究的学习习惯,学生都能大胆的说出自己的见解、方法,也训练了说话能力。
(片断二)
故事引入
师:下课了小狗、小熊、小猪做“找朋友”的游戏,好朋友见面之后要握握手,每两只小动物握一次手,小狗、小熊、小猪一共握几次手?怎样握?
学生在充分独立思考的基础上展开小组交流,并3人一组亲身实践一下。
汇报思考的过程。
小组1:我们这一组中,我和另外两人各握了一次,他们两人握了一次,一共是3次。
小组2:我们这一组依次按顺序握手,也是握了3次。
师:刚才我们帮森林学校的小动物们解决了用数字1、2、3能写几个两位数;3只小动物每两个握一次手共握几次手的问题,森林学校的小动物们直夸同学们聪明呢!通过解决这两个问题你发现了什么?
生:用3个数字能写出6个两位数。
生: 3只小动物每两人握一次手共握3次。
生:排数时有顺序,顺序不同数就不同。而握手就只是两个人,不管顺序。
(引导学生明确排列与顺序有关而组合与顺序无关。)
师:小狗要参加学校的时装表演,妈妈为它准备了4件衣服(课件出示2件上衣、2件裤子的图片),请你帮小狗设计一下共有多少种穿法。如果需要的话可以用学具摆一摆。
学生交流想法。(略)
(反思)
通过比较,明确排列与组合两种问题的.同与不同,便于建立起清晰的知识结构,进一步深化学生的认识。学习的目的是为了应用,安排用同一条故事主线贯穿整节课的始终,以问题串的形式展开全课,能让学生始终保持浓厚的学习兴趣,充分体验到数学与生活的联系。为小狗穿衣服的练习,学生能自主的选择方法进行,培养了学生的自主学习能力。在儿童的生活经验里已经积累了一些搭配衣服,购物花钱的知识经验,所以学生乐于参与。借助生活经验丰富学生数学思维,使学生体会到生活中处处有数学。实践证明,课堂中学生兴趣高涨,气氛活跃。学生运用数学知识解决了身边的问题,使学生的实践能力得到培养,同时使学生逐步学会用数学的眼光去观察和认识周围的事物,他们的数学能力、应用意识、实践能力得到培养和发展。
教学内容
义务教育课程标准实验教科书(人教版)二年级上册第八单元第一课时
教学目标:
知识目标:
使学生通过观察、猜测、实验等活动,找出简单事物的排列数和组合数。
能力目标:
培养学生有顺序地、全面地思考问题的意识。
情感目标:
使学生感受到数学在现实生活中的应用价值,尝试用数学的方法来解决实际生活中的问题。
教学重点:
经历探索简单事物排列与组合规律的过程。教学难点:初步理解简单事物排列与组合的不同。教学环节
一、创设情境,导入新课
今天,我们来上一节数学活动课,大家乐意吗?(板书课题)现在大家来看一下我们的活动目标。(课件出示活动目标)
师:老师给大家带来了一个新朋友,课件出示圣诞老人画面,圣诞老人过生日了,想请大家参加他的生日聚会,但是他有要求。通过圣诞老人提出本节课任务。
二、合作学习,构建模型
(一)初步感知。课件出示:
第一关:摆一摆,猜密码。(用数字卡片
1、2能排成几个两位数自己动手摆一摆)让学生自己动手摆卡片后,指名汇报。
(二)合作探究。课件出示:
第二关:摆一摆,比一比(用数字卡片1、2、3能摆成几个不同的两位数)比比看,哪个组找的最多。
小组探讨,组长把大家的讨论结果记录在练习本上。(活动开始,教师巡视。)
以组为单位派代表汇报。
师:有的组摆出了4个不同的两位数,有的组摆出了6个不同的两位数,你们是怎么摆的?有什么好办法?
(鼓励方法的多样化,对各组的不同方法进行肯定和表扬。)结合发言,引导学生进行评价,选出优胜组。
师生共同归纳:用数字排列组成数,要按照一定的顺序确定十位上的数,然后考虑个位上有哪些数可以与其搭配。
(三)握一握。课件出示:小精灵说的话。
恭喜你们成功的度过了前两关,现在,我们握手祝贺一下。师:每两人握一次手,三人一共握几次手?(小组活动,教师巡视)活动后,小组指名汇报。
师:究竟是几次呢?请大家互相握握看吧!请一个组的同学上台演示,其他同学一起数数。
(四)课件出示:
师:圣诞老人决定奖励你们两件上衣、两条裤子,那么一共有几种搭配方法呢?(课件出示图片。)
学生拿出学具卡片,小组活动解决问题。汇报交流,说说自己为什么这样设计。
三、分层练习,巩固新知
(一)付钱问题。
课件出示:99页做一做2题
小组讨论,小组长统计本组学生答题情况,并由小组代表汇报。
(二)拍照站法。
小丽、小芳、小美在风景如画的郊外游玩,三人想站成一排拍照留念,她们有几种站法?
小组讨论后,由一组学生上台演示,其他学生数一数。
【背景】
在日常生活中,有很多需要用排列组合解决的知识。如体育中足球、乒乓球的比赛场次,密码箱中密码的排列数,电话机容量超过多少电话号码就要升位等。在数学学习中经常要用到推理,如加法和乘法的一些运算定律的推导过程,能被2、5、3整除的数的推导等。这节课安排生动有趣额活动,让学生通过这些活动进行学习。例1给出了一副学生用数学卡片摆两位数的情境图,学生在进行小组合作学习,先用2个卡片摆,学生通过操作感受摆的方法以后,再用3个卡片摆;然后小组交流摆卡片的体会:怎样摆才能保证不重复、不遗漏。
【教材分析】
“数学广角”是新编实验教材新增设的内容,是新教材在向学生渗透数学思想方法方面做出的新的尝试。排列和组合的思想方法不仅应用广泛,而且是学生学习概率统计的知识基础,同时也是发展学生抽象能力和逻辑思维能力的好素材,这部分内容重在向学生渗透简单的排列、组合的数学思想方法,并初步培养学生有顺序地全面思考问题的意识。
【教学目标】
1.通过观察、实验等活动,使学生找出最简单的事物的排列数和组合数,初步经历简单的排列和组合规律的探索过程;
2.使学生初步学会排列组合的简单方法,锻炼学生观察、分析和推理的能力;
3.培养学生有序、全面思考问题的意识,通过小组合作探究的学习形式,养成与人合作的良好习惯。
【教学重点】
经历探索简单事物排列与组合规律的过程
【教学难点】
初步理解简单事物排列与组合的不同
【教学准备】
多媒体、数字卡片。
【教学方法】
观察法、动手操作法、合作探究法等。
【课前预习】
预习数学书99页,思考以下问题:
1、用1、2两个数字能摆出哪些两位数?
2、用1、2、3这3个数字能摆出哪些两位数?可以动手写一写。
3、想一想:你是怎么摆的,先摆什么,再摆什么?有什么好方法才会不遗漏,不重复。
【教学准备】
PPT
【教学过程】
一、以游戏形式引入新课
师:同学们,今天老师带大家去数学广角做游戏。在门口设置了?,?上有密码。这个密码盒的密码是由数字1、2组成的一个两位数,想不想进去呢?
师:谁告诉老师密码,帮老师打开这个密码盒?(生尝试说出组成的数)
生:12、21
师:打开密码盒
师:打开了密码锁,进入数学广角乐园。一关一关的进行闯关活动。第一关:1、2、3能摆出哪些两位数?第二关:如果3人见面,每两个人握一次手,一共要握几次手?
(设计意图:不拘泥于教材,创设学生感兴趣的游戏引入新课,引起学生的共鸣。同时又渗透了简单组合及根据实际情况合理选择方法的数学思想,起到了一举两得的作用。)
二、游戏闯关活动对比
师:老师现在有一个疑问,排数字卡片时用3个数可以摆出6个数,握手时3个同学却只能握3次,都是3,为什么出现的结果会不一样呢?
结论:摆数与顺序有关,握手与顺序无关。
摆数可以交换位置,而握手交换位置没用。
(设计意图:以相同数量进行对比,为什么数字要比握手多一半呢?引发学生知识冲突从而引发思考,激发学生的求知欲。)
三、应用拓展,深化探究
1、数字宫
师:第三关现在我们去那里玩呢?我们一起看看!
从0、4、6中选择两个数字排成两位数,有几种排法?
总结:为什么和上面发现的结果不一样呢?问题出在谁的身上呢?(0)
为什么?(0不能做一个数的第一位)
2、选择线路
师:同学们,米老鼠带我们欣赏完数学广角,准备回家了,有几条路供它选择?演示:
问题:数学城堡到家里,到底有几种走法呢?
(1)分组讨论。
(2)学生汇报,教师演示。
(3)板书:A——C A——D A——E B——C B——D B——E
(设计意图:题目层次性强,与生活联系密切。不同的人在数学上得到不同的发展,人人学有价值的数学。)
【反思】
本节课的设计做到了以下几个亮点突破:
1、创设游戏情境,激发学生探究的兴趣。
整课节始终用创设的游戏情境吸引学生主动参与激发积极性。我设计了:门上的锁密码是多少?本节课通过闯关游戏创设“数字排列”中有趣的数字排列,激发了学生解决问题的探究欲望。又如通过创设“握手活动”与学生的实际生活相似的情境,唤起了学生“独立思考、合作探究”解决问题的兴趣。
2、课堂中始终体现以学生为主体、合作学习。
“自主、探究、合作学习”是新课程改革特别提倡的学习方式。本节课设计时,注意选则合作的时机与形式,让学生合作学习。在教学关键点时,为了使每一位学生都能充分参与,我选择了让学生同桌合作;在解决重难点时,我选择了学生六人小组的合作探究。在学生合作探究之前,都提出明确的问题和要求,让学生知道合作学习解决什么问题。在学生合作探究中,尽量保证了学生合作学习的时间,并深入小组中恰当地给予指导。合作探究后,能够及时、正确的评价,适时激发学生学习的积极性和主动性。
3、让学生在丰富多彩的教学活动中领悟新知。
本课通过组织学生主动参与多种教学活动,充分调动了学生的多种感悟协调合作,既让学生感悟了新知,又体验到了成功,获取了数学知识,真正体现了学生在课堂教学中的主体地位。
教学内容:
简单的排列组合
教学目标:
1.使学生通过观察、猜测、实验、验证等活动,找出简单事件的排列数或组合数。
2.培养学生有序地、全面地思考问题的意识和习惯。
教学过程:
1.借助操作活动或学生易于理解的事例来帮助学生找出组合数。师生共同分析练习二十五第1题。让学生小组讨论,充分发表自己的意见。
2.利用直观图示帮助学生有序地、不重不漏地找出早餐搭配的组合数。
3、出示练习二十五第3题。
学生看题后,四人小组讨论出有多少种求组合数的方法。
4、学生汇报。
(1)图示表示法(两种)。引导学生用画简图的方式来表示抽象的数学知识。
(2)其他的方法,例如聪聪或明明分别可以和每一个小朋友合影(分步时,可以把确定聪聪作为第一步,也可以把确定明明作为第一步),教学时充分发挥学生的创造性。至于学生用哪种方法求出来,都没关系。但要引导学生思考如何才能不重不漏,发展学生有序地思考问题的意识和能力。
(3)学生自己用图示表示时,可以很开放,比如,可以用正方形表示聪聪,圆形表示明明,并分别在正方形和圆形里标上序号。实际这是发展学生用数学化的符号表示具体事件的能力的一个体现。
(4)如果学生用简图的方式来表示有困难,也可以让学生回忆一下二年级上册的例子或借助学具卡片摆一摆。
2.“做一做”
(1)练习二十五第7题。
通过活动的方式让学生不重不漏地把所有取钱的情况写出来。
(2)练习二十五第9题。
用两种图示法表示两两组合的方式(比较简单的两种方式)。在教学中也要允许有的学生把所有的情况逐一罗列出来,只要他通过自己的方法探索出所有的组合数,都是应该鼓励的。
求解排列应用题的主要方法:
直接法:
把符合条件的排列数直接列式计算;
优先法:
优先安排特殊元素或特殊位置
捆绑法:
把相邻元素看作一个整体与其他元素一起排列,同时注意捆绑元素的内部排列
插空法:
对不相邻问题,先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空档中
定序问题除法处理:
对于定序问题,可先不考虑顺序限制,排列后,再除以定序元素的全排列。
间接法:
正难则反,等价转化的方法。
例1:有3名男生,4名女生,在下列不同要求下,求不同的排列方法总数:
(1) 全体排成一行,其中甲只能在中间或者两边位置;
(2) 全体排成一行,其中甲不在最左边,乙不在最右边;
(3) 全体排成一行,其中男生必须排在一起;
(4) 全体排成一行,男生不能排在一起;
(5) 全体排成一行,男、女各不相邻;
(6) 全体排成一行,其中甲、乙、丙三人从左至右的顺序不变;
(7) 全体排成一行,甲、乙两人中间必须有3人;
(8) 若排成二排,前排3人,后排4人,有多少种不同的排法。
某班有54位同学,正、副班长各1名,现选派6名同学参加某科课外小组,在下列各种情况中 ,各有多少种不同的选法?
(1)无任何限制条件;
(2)正、副班长必须入选;
(3)正、副班长只有一人入选;
(4)正、副班长都不入选;
(5)正、副班长至少有一人入选;
(5)正、副班长至多有一人入选;
6本不同的书,按下列要求各有多少种不同的选法:
(1)分给甲、乙、丙三人,每人2本;
(2)分为三份,每份2本;
(3)分为三份,一份1本,一份2本,一份3本;
(4)分给甲、乙、丙三人,一人1本,一人2本,一人3本;
(5)分给甲、乙、丙三人,每人至少1本
例2、(1)10个优秀指标分配给6个班级,每个班级至少
一个,共有多少种不同的分配方法?
(2)10个优秀指标分配到1、2、 3三个班,若名
额数不少于班级序号数,共有多少种不同的分配方法?
.(1)四个不同的小球放入四个不同的盒中,一共
有多少种不同的放法?
(2)四个不同的小球放入四个不同的盒中且恰有一个空
盒的放法有多少种?
教学目标:
1、知识目标:使学生通过观察、操作、实验等活动,找出简单事物的排列规律。
2、能力目标:培养学生初步的观察、分析和推理能力及有顺序地、全面地思考问题的意识,并通过互相交流,使学生体会解决问题策略的多样性。
3、情感目标:
①使学生感受数学在现实生活中的广泛应用,进一步体会数学与日常生活的密切联系,尝试用数学的方法来解决实际生活中的问题,增强应用数学的意识,并使学生在数学活动中养成与人合作的良好习惯。
②使学生在探索规律活动中获得成功的体验,增强对数学学习的兴趣和信心。
教学重点:
找出简单排列与组合的规划,并能解答简单的排列与组合问题。
教学难点:
简单区分排列与组合的异同。
教学准备:
数字卡片、、衣服图片、多媒体课件
教学过程:
一、激趣导入
师:同学们,今天老师要带你们到一个有趣的地方去玩,想去吗?
板书:数学广角
想去的话,要通过老师的考核才能去的。
猜一猜:我的年龄是由数字3和5组成的两位数。
学生猜测并说明理由。
二、探究学习
1、3个数字可以摆出多少个不同的两位数?
课件出示:猜一猜,我家座机号码是0713-62147()()
先让学生猜一猜。
师:你们这样猜要猜到什么时候啊?这样吧,老师再给你提供一些信息:
剩下两个数字是由1、3、8三个数字中的两个。
(1)摆一摆
用手中的数字卡片摆一摆,共有几种可能?
老师给同学们准备了三张数字卡片,请你们动手摆一摆,同桌合作,一个人摆数,一个人记录。同学们尝试拼摆,并且将探究结果写出来。
教师巡视,留意学生的几种答案:有序的(先确定十位的,先确定个位的)、无序的、有遗漏的、有重复的。
(2)说一说
请几名学生(有代表性的)汇报。呈现在黑板
师:哪些是对的?你喜欢哪一种?为什么?
(如果学生还是说不出,教师可以引导学生观察有序的一种,1在什么位,1在十位的两位数能摆几个,师可用卡片同时演示;除了1还有哪些数可以在十位,他们分别又有几个两位数?像这位同学就是想到先确定十位。那么这位同学又是先确定什么的呢?或问除了先确定十位,还有其他方法吗?)
这样先确定十位或个位的方法好在哪里?(板书不重复、不遗漏)
(3)猜数
师:范围越来越小了,再给你些信息
课件再给出信息:这两个数的和为9,个位不是8。
(1)恭喜你们,猜对了,你们考核过关!来,同桌互相握手祝贺一下。
师:同桌2人互相握手几次?演示两人握手,可以说我和你握手,也可以说你和我握手,但算握手的次数的话,算几次?
这里也有三位小朋友在握手,她们是怎么握的?出示:每两人握手一次,三人共要握几次?
要说清楚握了几次,怎么握的,他们没名字怎么说得清楚?你觉得刚才说的方法麻烦不麻烦?怎样表示才能又清楚又简洁?
对啊,我们数学有自己的语言,可以用符号、图形来表示,更快更清晰。(师标上1、2、3)
(2)想一想,写一写
(3)为什么三个数排成6个两位数,握手只有三次?(课件出示)
师小结:生活中很多事情需要我们有序地思考,有些与顺序有关,有些与顺序无关,比如搭配衣服。
三、巩固提升
1、搭配衣服
该出发了,老师想打扮得漂亮些。这里有二件上衣和二条裤子,你能帮老师选一套衣服吗?
该怎么搭配呢?有几种不同的搭配方案?
师:你们摆出了几种不同的搭配方法?是怎么想的?
请生上台展示。
师:现在老师提出更高的要求,如果老师要你们把刚才的想法用连线的办法表示出来,你们会吗?
生在练习本上连线。
2、照相排队
小丽、小芳、小美三人想站成一排拍照留念,她们有几种站法?
生上台演示。得出一共有6种不同的站法。
师:有没有更简便的方法展示她们三人的站法?用你自己喜欢的方式试试吧。(可以是文字,符号,数字等)
4、路线
课件出示:从数学广角回到家中有几条路可走?
你会选择那条路呢?
学生讨论,汇报。
5、电话号码
师:在数学广角玩的开心吗?记得有什么开心的事要打电话让老师也听听。
课件出示:老师的手机号码:18942167()()()
最后三个数字是由1、6、8组成的,猜一猜,老师的手机号码可能是多少呢?
四、拓展延伸
师:今天我们在数学广角里玩,你有什么收获?
生自由发言
师:老师课后留了一个小问题,请同学们讨论好之后告诉我。
课件:09里面是不是任意三个不同的一位数字,都能排成6个两位数呢?
将本文的Word文档下载到电脑
推荐度: